
June, 1990
Volume 1, No. 4

The Journal of Apple II Programming

Magical Resources:
Joe Jaworski tackles the
Resource Manager

In this issue: .
I Computer Title Author

both The Publisher's Pen Ross Lambert
re: DB Master Professional Programming, KCFest, Welcome Cecil

llgs Magical Resources Joe Jaworski
re: Using the 1/gs Resource Manager

Page I
3

7

both A Modest Proposal Ross Lambert 22
re: Using the Pascal Protocol for parameter passing

both Vaporware Murphy Sewall 30
re: News, Views, and Ruminations industry-wide

8 bit Taking a Screen Test Jerry Kindall 31
re: Saving text screens to disk

llgs Directing Traffic Nate Trost 37
re: Using tdc, ted, etc. to swap direct pages

Purchase Slide-On battery (JPfuoto-Copyoolie)
kits from your local . _
dealer, distributor, user's
group, or direct from Nite
Owl.
School Purchase Orders
are welcome.
Order your IlGS a spare
today!

Telephone:
(913) 362-9898

Quantity • Pricing

FAX: Add $2.00 I Order
(913) 362-5798 Overseas add $5.00

r-----------------l
1 Nite Owl Productions 1
I Slide-On Battery Dept. A I

New kit restores your Apple /las
and

saves you the hassle and expense
of normal solder type batteries.

If you purchased an Apple JIGS computer before August
1989 (512K model), a Lithium battery was soldered onto the
computer board at the factory and the internal clock started
ticking. It is just a matter of time until the battery runs out of juice
and your computer forgets what day it is and any special settings
you have selected in the Control Panel.

If the software you are running uses the date and time to
keep track of records you could be in for real trouble when the
clock runs out. The JIGS is also known to lose disk drives along
with numerous other side effects caused by a dead battery.

Before the introduction of Nite Owl's Slide-On battery, the
normal method for replacing the JIGS battery was to pack your
computer up and take ~ to your local Apple dealer. The service
department would solder on a new one and charge you a small
fee, usually between $40 and $80. That was very inconvenient,
time consuming, and expensive for the typical computer owner.

Slide-On battery replacement is not much roore difficult
than changing a light bulb. Using wire cutters, scissors, or nail
clippers, the old battery is removed leaving the original wires still
soldered to the mother board. The new Slide-On battery has
special terminals which have been designed to fit onto the old
battery wires. It usually takes only a couple of minutes.
Complete, easy-to-follow instructions are included w~h every k~ .

Typically, our customers have reported that the original
equipment batteries have an average life expectancy of 2 to 3
years. This is about half as long as they were supposed to last.
Slide-On replacement kits include Heavy Duty batteries which
should provide for a longer battery service life.

We highly recommend that every JIGS owner keep a spare
battery on hand, ready for when the inevitable battery failure
occurs. These Lithium batteries have a shelf life of over 10 years.
The Slide-On kits come w~h a full90 day satisfaction guarantee.

Ship to:

Kansas
Sales Tax

1 5734 Lamar Avenue I

I Mission, KS 66202 1 ~ TOTAL
l ___ ~ __ J)Sf__ ________ J ~=-------------L-___ ___ __,

Shipping &
Handling

(Cut & Paste Address Label) Prices III<lY Otange without notice.

Copyright (C) 1990, Ariel Publishing, Most Rights Reserved

Publisher & Editor-in-Chief
Classic Apple Editor
Apple llgs Editor
Contributing Editors

Subscription Services

Ross W. Lambert
Jerry Kindall
Eric Mueller
Walter Torres-Hurt
Mike Westerfield
Steve Stephenson
Jay Jennings
Tamara Lambert
Becky Milton

Introductory subscription prices in US dollars:

·magazine
1 year $29.95 2 years $56

• disk
1 year $69.95 6 mo $39.95 3 mo. $21

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publishing, Inc. warrants that the information in 8116 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at any
time. Ariel Publishing's LIABILITY FOR ERRORS AND OMIS
SIONS IS LIMITED TO THIS PUBLICATION'S PURCHASE
PRICE. In no case shall Ariel Publishing, Inc. Ross W. Lambert,
the editorial staff, or article authors be liable for any incidental or
consequential damages, nor for ANY damages in excess of the
fees paid by a subscriber.

Subscribers are free to use program source code printed herein
in their own compiled, stand-alone applications with no licensing
application or fees required. Ariel Publishing prohibits the distri
bution of source code printed in our pages without our prior per
mission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249.

Apple, Apple II, Apple lie, Apple llgs, Apple lie, Apple lie+, Ap
ple Talk, Apple Programmers Workshop, and Macintosh are all
registered trademarks of Apple Computers, Inc.

AppleWorks is a registered trademark of Claris, Corp.

ZBasic is a registered trademark of Zedcor, Inc.

Micol Advanced Basic is a registered trademark of Micol
Sytems, Canada

We here at Ariel Publishing freely admit our shortcomings, but
nevertheless strive to bring glory to the Lord Jesus Christ.

The
Publisher's
Pen
by Ross W. Lambert

It has been my intention to make this column a short
and punchy exposition of non-technical information for
highly technical people. This month is neither short nor
punchy. buteveryitemis important (well. mostofthem.
anyway). And ifyou'll excuse my unbridled optimism.
there is so much to report because so much is happen
ing in the Apple II world.

Welcome Aboard, Cecil!

• Let's have an official 8 I 16 welcome to Cecil Fretwell,
long time CALL A.P.P.L.E. contributor. editor. spokes
person. and all around "character" (I was going to call
him the granddaddy of the Apple II. but I figured he'd
skewer me with a fork the next time he saw me ...). Cecil
is joining our list of regular contributors. You'll notice
that he is not appearing in print this month. however
that's because he is reassuming the role of answer man.
and is now dutifully awaiting your letters and ques
tions. Yes. Mike Rochip has passed the torch to a new
generation (now the question remains: who is older.
Mike or Cecil?). Send your questions to us here (Box
398, Pateros. WA 98846); we'll forward them on to Cecil.
Just make sure and mark them ATTENTION: GRAND
DAD.

Hehehe.

• Speaking of Cecil. he and Ken Kashmarek have
recently done translations of the source code in Ron
Lichty and David Eye's Prograrruning the Apple Ilgs into
C and Merlin 16+ assembly. respectively. You can get
either or both versions directly from Ron Lichty (or buy
the book outright. if you haven't yet): Ron Lichty, P.O.
Box 27262, San Francisco, CA 94127. Note that the C
disk is $20, the Merlin 16+ disk is $10, and the book is
$32. Also note that the C disk contains C s ource for
Hello. World for almost every point at which the book
suggests that source can be assembled and linked, from

Chapter 5 - 9. The Merlin disk. on the other hand, only
contains the completed Hello, World source. However,
Ken created two versions. In one he wentline by line and
converted the tool calls to Merlin supermacros. thereby
greatly compacting the source. In the other he left the
calls expanded. The information I received from Ron
Lichty also mentioned that he will send out a free errata
page for the book correcting two bugs, and error in the
text. and one serious typo - but you need to be sure to
send him a self-addressed. stamped envelope.

The Genesis of GeneSys (& DesignMaster)

• llgs programming took a quantum leap forward last
month with the release of both DesignMaster from the
ByteWorks and GeneSys from SSSi. I plan on formally
reviewing both products as soon as possible, but in a
nutshell they allow you to "draw" your interface by
moving around windows, buttons, etc. as objects on the
screen. They are hot, hip, and happening. One over
looked aspect of these programmer productivity tools is
that they are also good learning tools. I do not have a
copy ofDesignMaster yet so I cannot comment about its
language support. but GeneSys spits out code for Micol
Advanced BASIC GS . Merlin 16+, and a veritable
plethora of other languages and environments.

So What Software also has a nice set of editors in their
Call Box package that they've been shipping for a long,
long time. These small, task specific editors are handy
(though they don't compare in overall power and inte
gration with GeneSys). Unbeknownst to many, the Call
Box editors can generate APW output, too, and Bill
Stevens tells me that they are adding Merlin 16+ output

soon. The Call Box package is definitely a useful
alternative if you primarily feel at home in Applesoft.
Bill has some interesting surprises up his sleeve for the
future. too.

Based on preliminary information, GeneSys will have a
suggested retail price of around $150, but SSSi was
reported to be selling it on special at AppleFest for
approximately $100. I don't know how long that price
lasts. DesignMaster will retail for $95, but the Byte
Works is introducing it for $55. The entire Call Box
package (which includes the Call Box Toolbox Program
ming System), retails for $99.

The Byte Works
4 700 Irving Blvd NW Suite 207
Albuquerque, New Mexico 87114

SSSi
4612 North Landing Drive
Marietta, GA 30066
(404) 928-4388

So What Software
10221 Slater Ave., Suite 103
Fountain Valley CA 92708
(714) 964-4298

• A couple folks have had questions about the timing of
the magazine and the disk. At present, we are sending
them out separately. The magazine is sent to the
printer for reproduction and binding in the middle of the
month prior to distribution. At that time we begin
assembling the files for the disk (and hopefully grab a
few moments to upgrade the two DLT packages). When
we get the magazine back from the printer (7-10 days
later). we drop everything and ship it out to y'all third
class.

Mr. Postman tells me that domestic third class should
take 10-14 days, meaning that most of you should be
getting your magazines around the end of the first week
of each month. Let me know if it is taking longer. We
could push back production to better accomodate you.
Anyway, after the magazine goes out, we finish the disk
and send them to you first class. In theory they should
arrive sometime close to the magazine since they are
going on a faster boat.

In theory.

• The producer's of GS Numerics (now distributed by

A2-Central, though I wonder how it fits into their
product mix) have a marketing lesson for all of us who
sell our own 'wares: They are marketing bulldogs - they
don't ever give up or let go. I've received a press release.
a free promo video, and two follow up phone calls.

I don't fully endorse the software or their marketing
methods (a video?), but there is a point to learn here.
If we labor long into the night making our program
perfect, how can we expect to sell any of them if we don't
work just as hard at getting the word out? The GS
Numerics folks have learned that lesson and generated
a WT of free publicity thereby. You and I both can do
likewise.

Inquiring Minds Want to Know

• In spite of popular demand, we are printing a one page
rumor column, distilled from the industry-wide ram
blings of one Murphy Sewall. Murph's column is
syndicated in a rather odd. typically '90s sort of way. It
is published in the Washington Apple Pi and on various
online networks. We have picked it up and reprinted it
(with the author's permission, of course) because it is
interesting and much more serious (i.e. based on
knowledge) than other columns of similar ilk.

Besides, we're all rumor mongers at heart. I think it'll
be fun. And it might even tip you off to a trend or market

Developer's Conference in late July. I'd never tell him
this, but I'd have plastered a promo for it for free since
it is so vitally important to Apple II developers (I made
him pay for an ad, instead). The Apple II Developers
Association was formed there last summer and the
Beagle Bros. also bared the soul of the TimeOut series.

This year promises to be even better. My friend and
cohort Jay Jennings is arranging the conference semi
nars, so I'm privy to some of the classes in the works (as
if the Ilgs College were not enough!). You want state of
the art IIgs sound and animation? You want to find out
how to push 8 bit Apple's so hard that their monitor's
break out in a sweat? You want to find out how to
market your software (or, better yet. get other people to
market it?).

It's all there. And more. Be there. Aloha.

Walt! I feel a pulse!

Okay. so now that I'm a member of the established press
nobody tells me anything "secret" anymore. But I look
and I listen. The Apple II is about to be revived. It was
never really dead, only neglected and abused. One fact
I know: Apple is about to launch the first Apple II retail
ad campaign in years. And my sources tell me that the
passionate letters of Apple II fans everywhere are reach
ing the right people up at the big house. Keep those

"lf we labor long into the night making our
program perfect, how can we expect to sell any
of them ifwe don't workjust as hard at getting
the word out?"

movement that will make you money (there's a method
to our madness, eh?).

Last one to Kansas City is a rotten egg!

Marketing geeks (of which Tom Weishaar and I are
guilty of being from time to time) are often guilty of
hyperbole. Not so with Tom's ad for the Kansas City

cards and letters comin'.

Kersey, Bert 392-7645

Uh, I'm not literally looking for Bert Kersey. Y'all can
quit sending me his phone number and address. It was
all a multi-issue dip into metaphorical humor (with a
point) . Just humor me. In spite of my abuse of the

English language (my apologies to my colleagues). I
were an English teacher. Some people tell jokes. I
indulge in metaphor.

DB Master Professional Programming

In case you couldn't tell. I've got a lot on my mind this
month. One such burden is the fantastic DB Master
Professional package produced by Stone Edge Tech
nologies. You may wonder what that relational data
base has to do with Apple II programming.

Two very important things.

First. in the MS-DOS and Macintosh worlds there is an
entire breed of developers known as database applica
tions programmers. Contrary to what you might think,
these guys are not writing databases. They are using
databases like Dbase. Foxbase, and 4th Dimension.
These muscular relational packages allow you to create
a stand alone, task specific or turnkey application that
these database applications programmers then sell for
a fortune (but they pay a hefty license. of course).

A friend of mine routinely rakes in $2000 for a week long
"consultation" in which he creates a database for a
specific (usually small) business. He basically just
creates templates of their paperwork and then gener
ates reports that manipulate the data upside down and
backwards.

It is a kind of programming, only it is based on a highly
specific knowledgebase, not technical wizardry.

Don't get me wrong, I'm all for technical wizardry. But
if the Apple II is ever going to gain a foothold in the small
business market (which it should, especially if a faster
GS is in the works). we need people to create these kinds
of specific applied applications to show the MS-DOS
bigots how powerful the II really is. Sub point 1: every
relational database I've ever messed with is pretty much
disk-based. This makes disk access speed one of the
most important factors in determining the true end
user perceived speed of the product. Any Apple II with
a good high speed hard disk is a competitive machine
when you cast things in these terms. Subpoint 2 : Far
too many people assume that if AppleWorks™ can't do
it, it's time to look into MS-DOS. I think these folks
would be quite surprised at the speed and flexibility of
DB Master Professional.

I don't bless every facet of the program. The inconsis-

tency of the interface bothers me. But creator Bamey
Stone has not claimed to have the last word on such
matters. thus he created the subject of main point #2:

The BASIC Programmer's Pak

Barney has distilled the essence of his file management
system into a set of Applesoft ampersand routines
which allow you to read and write records to an existing
DB Master Professional data file. This opens the door
for us to create a background system with the main
application, and then stand alone data entry templates
in Applesoft.

But that's not all folks. Barney is also creating a
complete stand-alone applications generator. Like
Dbase, this would allow you to setup data entry tem
plates and reports within the program and then com
pile it into a regular SYS file.

I think this is an exciting new opportunity for developers
and even hobbyists with an eye towards turning a buck.
And there's one HUGE, market sitting around aching to
be reached: schools. If we hesitate. this opportunity will
pass us by because " ... the only decent administrative
software is on the IBM/Macintosh" (said by my local
high school principal). But a good attendance/busi
ness office/student records kind of program could be
written in two or three days using DB Master Profes
sional. and then marketed to thousands (maybe even
millions) of schools who have not yet jumped to other
brands.

I think this is sufficiently important to run a series of
articles illuminating the details. Let me know what you
think about that (and our overall editorial mix). Though
I don't promise to answer or print every note, I really do
read them all.

==Ross==

Magical, Mysterious Resources
by Joe Jaworski

Probably the most talked about (and misunderstood)
component of System Disk 5.0.2 is the resource fork.
After all, these little devils have really given us some
grief: not only do we have to learn another hundred or
so tool calls, but they have rendered those old copy
programs we love into useless applications. Now we're
supposed to change the way we program entirely,
developing windows parameters, controls, and even
simple pascal strings as separate entities from our main
program. We need new support software and tools in
addition to our compilers, and what's really scary is the
thought anybody with a resource editor will be able to
modifY our programs extensively without having the
source code. Is all this really worth it?

Yes, it is. The Resource Manager is the greatest thing
since sliced bread. It unloads a tremendous amount of
programming burden to the system software, making
our programs load faster, run faster, and manage
memory better. Best of all, it does all of this with less
programming effort on our part.

Sounds too good to be true? Stick with me. We'll cover
the basics, move to some advanced topics, then show a
resource-based application in action. Hopefully, the
mysteries of the resource will fall by the wayside.

Resources are too simple

A resource or extended file is nothing more than two
files in one. I'll repeat that one more time because this
is most important: a resource or extended file is nothing
more than two files in one. These two files live behind a
single filename. Like any other ProDOS file, the file can
live in any folder or subdirectory. We'll call one half of
the extended file FILE1 and the other FILE2.

When you access an extended file using a GS I OS READ
or WRITE command, you normally get access to FILE 1.
If you want work with FILE2, you have to specifically ask
for it (via setting a bit in the parameter table). Then.
everything works the same. You can read or write
anything you want to either FILE1 or FILE2. For ex
ample, you could save a graphics image in FILE1 and

ASCII text in FILE2.

FILE1 and FILE2 are truly independent files, just like
two files on the disk. Writing to one doesn't disturb the
data in the other, and vice versa.

FILE 1 and FILE2 can also be different sizes. FILE 1
could be 512 bytes in size, while FILE2 could be
128,000 bytes. When you CATALOG a disk, you see the
total size of FILE 1 and FILE2listed in the blocks column
of the catalog display. It doesn't matter if you use
AppleSoft or the Finder to do the catalog; the two halves
of the file are "added up" and you see the real size ofthe
file in blocks. However, the end-of-file or file length field
of the catalog display only shows you the length of FILE 1
(this !s to maintain compatibility with ProDOS 8).

Speaking of ProDOS 8, this "dual file personality" of
extended files has presented some conflicts with older
programs, especially disk utilities. As you may know, all
ProDOS files have a "storage type" which defines the
size and structure of the file. A new storage type was
created for the ·extended file. Older copy programs
probably won't recognize this new storage type and will
generate an error. Some that don't behave well under

''Using an older ProDOS 8
program to copy extended
files is not a good idea."

error conditions try to proceed anyway, and usually
copy only FILE 1. Sometimes, they completely miss the
mark and only copy garbage. The point is, using an
older ProDOS 8 program to copy extended files is not a
good idea.

You can determine which copy programs you have are

compatible with extended files and which are not. To be
safe, do the following experiment on a floppy and not on
your hard disk. Tty and copy an extended file, such as
the System file SYS.RESOURCES located in the
System. Setup folder. If you get an "Unsupported stor
age type" error, you know there's a compatibility prob
lem. If no errors occur during the copy. compare the
block count of the original and duplicate file. If they're
different. the program doesn't support extended files.

ProDOS 8 MLI commands don't directly support ex
tended files. However, if a ProD OS 8 program interprets
directory information itself, it can be made "extended
file compatible". There is nothing inherent in ProDOS 8
that prevents an application (i.e., SYS file) from working
with extended files. Any program, be it 8 or 16 bit-based,
can work with extended files.

Metamorphosis:
Extended Files Become Resources

Up until now, I've purposely avoided the word "re
source" in describing the extended file. This is because
we've only discussed extended files, and NOT resource
files.

Here's the trick: to convert an extended file into a
resource file, you simply pass a filename to the Re
source Manager's _CreateResourceFile call. That's all
there is to it. The Resource Manager changes the
original storage type to an extended type, creates a
blank FILE2, and then writes some special data to
FILE2. (Through all of this, the Resource Manager
hasn't touched FILE l and does not modify it's data.)
With one tool call, you have just transformed a conven
tional file into an extended file as well as converted it
into a resource file.

The special data written to FILE2 by the Resource
Manager is nothing more than a list of pointers and
fields that describe how other data will be eventually
stored within FILE2. In a sense, this data is a "mini
catalog" that points to and defines all the resources held
within FILE2.

Note that none of the Resource Manager's tool calls can
access or otherwise disturb the data in FILE 1. (That half
of the file normally holds the executable code of your
application.)

It's probably become apparent that the Resource Man-

ager toolset works more like GS/OS file calls rather
than conventional toolbox calls. This is true. In fact. the
Resource Manager has an OPEN call for files. and uses
its own form of file reference numbers similar to that of
GS/OS and ProDOS 8 MLI commands.

Now let's change some of our terms to adhere with the
rest of the world. We will call FILE I the data fork, and
FILE2 the resource fork. This is the standard conven
tions used to describe an extended file. either created or
modified by the Resource Manager. By the same token,
we will call our "extended" file a "resource" file. The two
terms are often used interchangeably, though techni
cally a resource file is an extended file with the resource
fork formatted or initialized by the Resource Manager.

A resource itself is a chunk of data that is stored in the
file's resource fork. The Resource Manager will auto
matically grow and shrink the size of the resource fork
to hold more or less resources. Each individual resource
can vary in length, depending upon what kind of data
you want to store in it.

For most applications, you really don't have to be
concerned with the "mini catalog" or special pointers
contained at the beginning of the resource fork. The
Resource Manager manipulates this section exclu
sively,just as GS/OS manipulates subdirectories when
you ask for a file.

If you want to access the data within a particular
resource, you simply pass a type and ID to the Resource
Manager. These two numbers define a unique resource
within the fork, just as a full pathname points to a
unique file on a disk. In most cases, the Resource
Manager will then transfer the resource's data to
memory, and you receive a handle telling you where the
data is located. After dereferencing the handle, you can
do whatever you want with the data. If you change it,

r

A Parable by Ross W. Lambert, Editor-in-Cognito

Once upon a time there was BLOAD .. . it was a nice little command, but fairly unintelligent. Apple II
wizards everywhere used it to deposit subroutines, data, parameters and other goodies into their
machines. These wizards spent hours finding little nooks and crannies in the II where they could squirrel
away their stuff. Sometimes they ran out of nooks and crannies, though.

The fruit gods had compassion on the wizards, therefore, and bestowed new and powerful magic upon
them - resources. But the wizards were baffled and befuddled. "What is a resource?", they cried. "And
more importantly," they wailed, "WHERE is a resource?"

The fruit gods were strangely silent, but for good reason.

In time, the wizards began to play with the resources. It was not long before they discovered two
important facts.

First, a resource could be whatever a wizard wanted it to be! The fruit gods decreed that there would be
a bunch of" standard" resources with formats that would allow menu items, menu bars, buttons, window
definitions, etc. to be put in resources and communicate clearly with new toolbox calls. The fruit gods
described these in Appendix E of The IIgs Toolbox Reference Volume ill(As things tumed out, most of the
wizards didn't need to know those details. A bunch of magic appliances started to appear on the market
that let the wizards make those resources using pictures. Many, many wizards rejoiced.) In spite of
standard resources, which were really just a convenience provided by the fruit gods, the wizards soon
realized that they could put just about anything they wanted into the magical resource form.

Second, the wizards begah to discover that, no matter what they put into a resource, they no longer had
to worry about finding a nook or cranny for it. They could just do a little incantation and poofl Their
resource would appear before them. Amazingly, they could even make more or bigger resources than
would fit into memory all at once, and the resource magic would still make their resource appear on
command.

This was powerful magic, indeed.

you can tell the Resource Manager that the data has
changed with a _MarkResourceChange call. The Re
source Manager will automatically update the resource
on disk-perhaps not right away, but definitely before
you quit your application. When you're done with data
from the requested resource, you do nothing. The Re
source Manager also manages the handle (i.e., creates/
disposes of it) automatically.

The pascal string resource has an type number of
$8006 (all system resources start with $8xxx). In addi
tion to the type, every resource has an ID number that
you define in your program. This way, you can have
more than one type of resource in each program.

There is nothing magical about system resources
(Editor: Oops. I blew that headline). If you wanted to, you
could store graphics data in a pascal string resource:
the Resource Manager wouldn't care one way or the
other. It would still transfer your resource to memory as
usual. System resources are merely a numbering
scheme that standardizes the contents of resources.

There are system resources and user resources. System
resources are predefined for a particular purpose, and
have unique ID's associated with them. For example,
there is a system resource dedicated for a pascal string.

However, standardization is important. By respecting
system resource type numbers, you can be sure that
your program will be compatible with other applica
tions, such as resource editors. Similarly, future sys
tem software releases will likely extend the capabilities
of the Resource Manager, and this could affect system
resource handling.

The "user" resources are free-for-ails. That is, they can
hold any kind of data you want. They are best suited for
unique types of data needed by your program that
cannot be satisfied by any of the standard system
resource types.

" ... standardization is important. By
respecting system resource type
numbers, you can be sure that your
program will be compatible."

Applications of the Resource Fork

The typical resource file contains your compiled pro
gram in the data fork, and variable or static data in the
resource fork. The advantage here is that you do not
have to modify or re-compile your code to change a
resource. Here are some specific applications:

Desktop Interface Data. This is the most often quoted
application. All of your windows, buttons, alert strings,
menu definitions, and so on could be contained in the
resource fork. With an appropriate resource editor, you
could create these items before you develop a single line
of program code. In this way, you're not subject to the
painful task of recompiling your code to move a window
here or there or a button a few pixels left or right.
Amazingly, we spend most of our programming efforts
doing this.

Update Information. Rather than shipping your soft
ware with user manual addendum sheets, put the text
in the resource fork, accessible by a menu selection in
your main program. You won't have to re-compile the
application for addendum changes, and other individu
als (such as your tech support department) could

update the file with a resource editor. If nothing else,
you'll save paper and phone calls on common user
problems.

Serial Number. Put a serial number (or create one when
the program is first launched) in the resource fork. This
way, every user can have a unique serial number that
is displayed with the program, and becomes a perma
nent part of the individual copy.

Language Conversion. If you ship your software inter
nationally, put all your ASCII strings in resources.
Anyone can perform a language conversion of your
software without needing to compile (or even have a
copy oO your source code.

Graphics. Icons, cursors. and other graphic objects are
a pain to modify. especially if they've been converted to
source code. Using resources allows you to go back and
do it graphically in half the time. {Editor: It also pennits
a user with a resource editor to customize your graphics
to suit themselves. Personally, I like this idea, but there
are those folks that don't want the user messing with
their program's guts in any fashion.)

Pass Parameters. If your application consists of more
than one executable file, you could pass information
from one file to the next by modifying a common
resource.

Digitized Sounds. Sounds take up an incredible
amount of memory. Put them all in the resource fork,
and they'll only be loaded by the Resource Manager
when you program actually needs them. You may be
able to easy the memory reuqirements for your applica
tion, or you might be able to include more sound files
than were otherwise impossible.

Default Settings. Allow the user to customize his or her
copy of your application by modifying default settings
kept in a resource. When the program is launched
again, the user gets customized defaults settings, not
the factory settings.

User Modifications. Let's face it,just about everyone is
a hacker to one extent or another. Allowing the end-user
to modify menus and strings with a resource editor is
not a bad thing, and may add a little extra sex appeal to
your application.

New Ways to Solve Old Problems
Everyone likes to add graphics to an application. The
problems associated with full screen graphics are they
take up a lot of memory, and increase launch time
(when embedded as source code in the application) or
force you to use auxiliary files. I don't know about you,
but I really dislike the latter. Unless the application is
some piece of entertainment software with many sup
port files in their own folder(s), I hate cluttering up
subdirectories with lots of little support files. I never
know who owns what file, and when I clean up my hard
disk, and usually delete an important one.

If we put the graphic in a resource, we solve multiple
problems at once. First off, the picture doesn't actually
load when you launch the program: it only loads when
the user chooses the menu item that invokes the
resource. Secondly, being in a resource eliminates the
need for an external support file. And third, we will use
a packed (compressed) picture to lessen the disk space
required to hold the application.

To unpack the graphic in the application, we will use a
feature of the Resource Manager called a resource
converter. Resource converters are handy things. They
process the data from a resource in a special way before
returning the handle in memory. In other words, the
resource on disk and the resource in memory become
two different things. In sample code, I included a
resource converter that unpacks a super hi-res graphic
image.

The application "Picture.Show" (listing one) is a com
plete desktop-based program that illustrates the Re
source Manager in action. Most ofthe segments used to
create menus and handle the main event loop are
probably familiar to you, so I won't go into great detail
on those. The program is organized into in the following
segments:

0 MainCode - Performs program initialization and
handles the main TaskMaster event loop.

0 DoAbout - A routine that displays a simple ABOUT
window via the AlertWindow call.

0 DoPictureShow- The routine that loads our picture
resource into memory and displays it.

0 DoQuit -Passes control to ShutDown when user
selects the Quit menu.

0 PictConvert - The Resource Converter code called
by the Resource Manager.

0 InitMenus - Sets up and displays the menu bar.

0 InitStuff- Loads and starts up the tools.

0 ShutDown - Shuts down all tools and quits.

0 MenuTables - Menu definitions.

0 GlobalData - Common data area and variables used
by all other segments.

When Picture.Show is launched, a noticeably skimpy
menu bar appears with just APPLE and FILE menus.
Under the file selection is an item called SHOW PIC
TURE. When the user selects this item, the code in
DoPictureShow is executed. Let's follow it through.

The first thing that happens is a _LoadResource call is
made to get the graphics screen into memory. The
Resource Manager returns a handle to us telling us
where in memory the graphic is located. When you
actually run this program, you'll notice that the first
time you select this menu item, disk activity occurs.
After that. the picture will appear, but no disk activity
will take place. This is one of the beauties of the
Resource Manager: you don't have to be concerned
whether a resource is in memory or on disk because the
resource manager automatically loads it if it is needed.

After the _LoadResource call, we lock and deference the
handle returned by the Resource Manager to prevent it
from moving around while we're using it. Then, we
create a new window and copy the pixels of the graphic
using a _PPToPort call. Because we want the user to
view the picture for as long as he or she wants, we wait
around for any event (which is likely to be a keypress or
mouse click) by the _GetNextEvent call. When an event
occurs, we dispose of our window, unlock the handle,
and return to the main event loop.

You may be wondering how we magically unpacked this
graphic without specific calls to _PackBytes or the
routines to support it. Well, this is the good news about
resource converters. The conversion is totally transpar
ent to the _LoadResource routines. You simply call
_LoadResource and the conversion is done before you
get the handle. The bad news is that you have to write
the conversion routine yourself. (Of course, once you've
written a resource converter, you can use it in any of

your programs without having to recreate it from
scratch.)

In listing one is a segment called PictConvert, which
constitutes the picture unpacking routine. When we
called _LoadResource, the Resource Manager called the
PictConvert routine to find out how to convert the
resource. In this case, _PackBytes was called to unpack
the graphic image.

When the Resource Manager calls any resource con
verter, it passes a specific command that needs to be
processed. If you've used custom controls in the past,
you're familiar with the Control Manager's custom
control DefProc procedure. This mechanism is very
similar to converters. In this specific example. we only
interpret the Resource Manager's request for READ
command, which is our cue to read the resource data
into memory and do whatever we have to in the conver
sion. Basically. PictConvert expands the size of the
handle to make room for the unpacked version of the
data. unpacks it, then resizes the handle accordingly.

Resource Converters are limited only by your imagina
tion. Any time you need to process data in some way, the
Resource Converter mechanism can do it. For example.
suppose your resource converter processed its data
through the Loader's _InitialLoad call. You could then
save a code fragment in a resource. and the converter
would do the relocation and loading of it for you. The
dereferenced handle would be the starting address of
another program! How about a converter that reads
ProD OS directory blocks and transformed them into the
standard ASCII strings used in a CATALOG command?
Or a converter that changes an AppleWorks data base
file to a random access text file? Just about anything is
possible.

Creating Custom Resources

Picture.Show uses a custom, or user, resource. As
such, we can't use a resource editor and need an
additional program to "attach" or create the packed
picture resource to the application's resource fork.
Listing two, ResMaker, shows how to do this.

The Label "PictName" and "AppName" in listing two
define the file names of our separate packed picture and
application file. respectively. ResMaker searches the
current directory for a file named "Res.Pict" which it
assumes is a packed SHR screen. It then attaches that
screen as a resource to the application named in the

PictN arne label.

You can convert any paint file to the "PackBytes" ($CO/
$0001) format using the shareware program SHRCon
vert or Roger Wagner's Graphics Exchange, or your
paint program may save pictures directly in PackBytes
format. In any case, the packed picture must be named
Res.Pict for ResMaker to recognize it. Similarly, the
application must be named "Picture. Show". Of course,
you can change these two strings in ResMaker to
anything you like. Note. however. that both strings are
Class 1 GS/OS strings. meaning that they are pro
ceeded by a word (16-bit) length field.

To keep things simple, ResMaker is an ORCA/M EXE fil
and is executed under the Orca shell rather than a
stand-alone program. To assemble Picture.Show and
attach its packed picture resource, either type-in or
create an exec file with the following commands:

asml ps.s
filetype ps S l 6
rename ps picture . show
resmaker

This assembles and links the program, changes the
resulting file to a S16 type. renames it to Picture.Show,
and runs ResMaker, attaching the resource.

Ripping into ResMaker

Let's see how Res Maker does its job. First, a few tools are
started up, followed by a GS/OS OPEN call on the file
Res.Pict. After the EOF (size of the file) is known, a
_NewHandle call is made to allocate some memory, and
the picture is loaded. Once in memory, a _CreateRe
sourceFile call is made to convert Picture.Show to an
extended file with a blank resource fork. Once that is
done, the handle created is passed to the _AddResource
call. This does all the work. The data (graphics) in
memory are transferred to the file's resource fork and is
assigned a type of $0020 and an ID of $00000001.
These numbers are arbitrary, and you could use just
about any type and ID values you like (as long as you
don't step on system resource types).

The attributes we passed to _AddResource indicates an
unlocked, purgeable block at level 3. This tells the
Resource Manager that the resource can be purged
from memory if the system needs the space. (The
Resource Manager works best if you define all your

resources as purgeable.)

Next, we change the attributes of the resource with a
_SetResourceAttr call. This tells the Resource Manager
that a converter is needed for this resource. Note that
you can't just set the Resource Converter bit in the
attributes word when you make the _AddResource call.
This would cause the Resource Manager to call the
converter immediately, and since the converter
(PictConvert routine) is actually located in our main ap
plication. the Resource Manager would generate an
error indicating that a converter doesn't exist. Using the
_SetResourceAttr call gets around this problem.

Once the new attributes are set, we close the resource
fork ofPicture.Show, dispose of the memory the picture
occupied, and shutdown the shell application. The
Resource Manager automatically saves all new re
sources to the resource fork generated by an _AddRe
source call.

ResMaker is a "quick and dirty" way to add a resource
to an application. With some tweaks, you could get
fancy and modifY ResMaker to work with just about any
resource. There is also very limited error checking and
handling in ResMaker. For example, If you run Res
Maker twice, that is, run it again from the shell after
Picture.Show has already been processed by Res Maker.
you will get a fatal error from the _AddResource call.
This is because the resource you want to add already
exists. The ambitious programmer is welcomed to
modifY and improve ResMaker, perhaps turning it into
a mini resource editor!

Where do we go from here?

We have barely scratched the surface in exploiting the
Resource Manager's capabilities. Many of the calls not
covered here (i.e.. _AddAbsResource. _DetachRe
source. and _MatchResourceHandle) constitute a pow
erful set of tools that can be used to create unique
functionality in your programs. And of course, you can
still use resources to hold window parameters and
button names. But this often-promoted use is minor
compared to the full potential of this valuable new tool.

Listing 1:

*

*
*
*
* Picture.Show

*
*
*
* An example of how to use custom resources

*
* By Joe Jaworski 4/19/90

*
*
*
* ORCA/M Assembler 1.1

*
*
*
**'

MainCode

toolsets

. ,

TLoop

MCOPY ps.mac
KEEP ps

START
USING Global Data

PHK
PLB
CLD
JSL InitStuff ;!nit

JSL InitMenus ;Setup Men
InitCursor

TaskMaster Main Process Loop

ENTRY

WordSpace
Push Word
PushLong

TaskMaster

PLA

tSFFFF
tTaskRec

;Accept all even

CMP twinMenuBar;Menu Item Selecte
BNE TLoop ;Ignore all othe

Menu Item Sleeted

TitleOff

LOA
AND
ASL
TAX
JSR

Push Word
Push Word

TaskData
t$OOFF ;Create our Jump Tac
A ;Multiply by 2

(MenuJumps, X)

to
TaskData+2

;Go do it

KAT will sell no drive
before it's time ...
KAT will not ship a hard drive without first:

• Conferring with you about your entire system and setting the drive's interleave so as to insure optimal
preformance for you.
• Discussing the various partioning options and then setting them up to fit your specifications.
• Depositing 20 megabytes of freeware, shareware, the latest system software, and all sorts ofbonus goodies
on the drive.
• Testing the drive for 24 hours before shipping it out.

KAT drives come in industrial-quality cases that have 60 watt power supplies (115-230 volts), cooling fans,
two 50 pin connectors and room for another half-height drive or tape back-up unit. We also include a 6ft. SCSI
cable to attach to your SCSI card. You get all of this plus a one-year warranty on parts and labor!

SB 48 Seagate 48 meg 40ms
SB 85 Seagate 85 meg 28ms
SB 105 Quantum 105 meg 12 ms

$549.99
$698.99
$849.99

Looking for an even hotter system? Call and ask for a quote on our 170, 300, & 600 megabyte Quantum drives!

Soya wanna build yer own? Let KAT provide you with the finest parts available ...

SB Case 2 HH Drives 7w 5h 16d
ZF Case 1 HH Drive lOw 3h 12d
48 meg liD Seagate 40 ms 3.5" SCSI
85 meg liD Seagate 28 ms 5.25" SCSI
105 meg liD Quantum 12 ms 3.5" SCSI

$139.99
$169.99
$349.99
$469.99
$669.99

T -60 Tape Teac 60 meg SCSI
with hard drive

3.5" to 5.25" Frame
Cable 25 pin to 50 pin 6 ft.

50 pin to 50 pin 6 ft.

$449.99
$424.99
$ 12.50
$ 19.99
$ 19.99

Programmers! Check our prices on your favorite
development packages and accessories ...

Byte Works
Orca C $89.99
Orca M $44.99
Orca Pascal $89.99
Orca Disassembler$34.99

Other software and accessories:

Vitesse, Inc.
Excorciser, virus detection system $ 29.95
Renaissance, hard disk optimizer $34.95
Guardian, program selector and disk utilities
$34.95

Applied Eng. Transwarp GS $289.99
Keytronic 105 Key ADB Keybrd $139.99

Roger Wagner Publishing
Hyperstudio $94.99
Macromate $37.99

Stone Edge Technologies
DB Master Pro $219.99

Quickie, terrific hand scanner (400 dpi, 16 grays)$249.99

Computer Peripherals
ViVa24, 2400 baud, 100% Hayes compatible modem
(comes with a FIVE YEAR Warranty) $139.99

1 meg SIMMs 80 ns $89.99
1 meg X 1 80 ns 8/$79.99

Call the KAT at (913) 642-4611 or write: KAT, 8423 W 89th St, Overland Park, KS 66212-3039

_HiliteMenu ;Highlighting off
LDA QuitFlag
JEQ TLoop
JML ShutDown;Quit application

; Menu Jump Table

MenuJumps DC
DC
DC
END

I'DoAbout'
I'DoPictureShow'
I'DoQuit'

........ Menu Selection Handlers

DoAbout

Subroutine for the About Window.

DoAbout

AboutMsg

illustrate'

START
USING Global Data

WordSpace ;Simple window
PushWo rd tl
PushLong to
PushLong tAboutMsg
_Alert Window
PLA ;Trash response
RTS

anop
DC C' 43!'
DC H'Ol',C'S' ,I'$0001'
DC C' Picture Show'
DC H'Ol',C'S' ,I'$0000'
DC Il'CR'
DC C'By Joe Jaworski'
DC Il'CR' ,Il'CR'
DC C'Just a little program to

DC C' custom resources. '
DC C' ! "tO I
DC I'O'

END

DoPictureShow

Subroutine to display Packed Picture Resource.

DoPictureShow START
USING Global Data

Long Space
PushWord
PushLong

;Get Pictur e resourc
trzMyiD ; Type
trzPict ; ID

_LoadResource
ErrorDeath 'LoadResource fat a l'

KeyHandle
;Lock i t

KeyHandle ;Derefer ence it
<0

Copy Long
Hlock

De ref
PushLong

PullLong KeyPoint;Copy to SrcLocinfo re

Long Space
PushLong

NewWindow
tKeyWParms

PullLong KeyWPtr

;Open key wind

;Save Grafport

Copy Pixel Image to the window

LongSpace
Get Port

PushLong
SetPort

PushLong
PushLong
Push Word
Push Word
Push Word
_PPToPort

WordSpace
Push Word
Push Word
_FlushEvents
PLA

NextEventH WordSpace
Push Word
PushLong

;Save current g rafport
KeyWPtr;But leave on stack

tKeyLocinfo ;Source Location
tmyrectkey ;Source rect
tO ;X c oord (none)
tO ;Y c oord (none)
to

t$FFFF
to

;Default pen xfer

; Clear queue

t$000E ;Mouse / Keyboard Ma
tLocalHRec

_GetNextEvent

All Done

PLA
JEQ

Set Port
PushLong

CloseWindow

; Get any non-null eve
NextEventH

KeyWPtr
; Restore Grafport
;Close it up

PushLong KeyHandle ; Unlock it
HUnLock

RTS

; KeyEqu Window Parms and local scratch

KeyWPtr DS
KeyHandle DS

KeyWParms DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

KeyWEnd anop

myrectkey DC
minus Menu Bar

KeyLocinfo anop
DC

KeyPoint DS
DC
DC

END

Do Quit

4
4

;Window grafport ptr
;Pic Resource Handle

I'KeyWEnd-KeyWParms'
I'%0000001000100100'
!4'0'
!4'0'
!'0,0,0,0'
!4'0'
!'0,0'
I' 0, 0 I

!'0,0'
!'0,0'
!'0,0'
!4'0'
!'0'
!4'0'
!4'0'
!4'0'
!'13,0,200,640'
!4'-1'
!4'0'

I'10,0,200,640';Full Scrn

!'128' ;SrcLoc record
4 ;Pixel Ptr (filled-in)
!'160' ;Width in bytes
I'0,0,200,640';BoundsRect

Subroutine for the "QUIT" Menu Item.

DoQUIT START
USING GlobalData

PictConvert

This is the subroutine that converts the
application's packed

resource into an unpacked picture. This routine
is called only by the Resource Manager.

PictConvert START
USING

cvResRef EQU
cvParms EQU
cvCommand EQU
LResult EQU
zpLocal EQU

LINK
STZ
STZ

LDA
BEQ
UNLINK
RTL

AuxCode
Global Data

Linkin+O ;Resrc Ref Word p
Linkin+4 ;Cmmd Parms passe
Linkin+9 ;Converter Cornman
Linkout+O ;Spc for result
0 ;Local zero pg 4

10,4 ;10 on
<LResult
<LResult+2

stack,4 local va
;NIL result alwa

<cvCommand ;Check cmd type
Readcv ;Go read It

;Not a read command, ignore

; Exapnd the Handle Size

Readcv PHB
PHK
PLB

LOY
LOA
STA
!NY
!NY
LDA
STA

LDY
LOA
ADD
STA
STZ

;Allow abs addressin

i16;Get Handle from resrc r
[<cvResRef], Y

<zpLocal

[<cvResRef], Y

<zpLocal+2

;To direct pag

i 12 ;Get Size of Fil
[<cvResRef], Y

i$7DOO;Expand by ScreenSize (32
RNewSize
RNewSize+2

INC QuitFlag ;Simply set ur ;OK, never over 64K total
Quit Flag

RTS
END

. Support Routines

PushLong
HUnLock

PushLong
PushLong

<zpLocal ; UnLock it

RNewSize ;Resize it to actu
<zpLocal

SetHandleSize

PushLong
HLock

<zpLocal ;Lock it up again

Update ReadParms in case it moved in memory
(SetHandleSize can do that do you)

(Class 1)

LOA
LOY

STA
STA
LOY
LOA
LOY
STA
STA

PushLong
PushWord
JSL

[<zpLocal]
t4 ;Start of Data buffer

[<cvParms],Y
Buff Start
t2
[<zpLocal],Y
H
[<cvParms], Y
BuffStart+2

;Do MSB, too

<cvParms;Issue READGS cmmnd
tReadGS
>GSOS

Picture's in memory- go unpack it

WordSpace
PushLong
LOY
LOA
PHA
STA
ADD
STA
LOA
STA
PushLong
LOA
STA

BuffStart;Start of packed
t8
[<cvParms],Y;Size of packed

PackSize
BuffStart;Create unpkd loc
UnPLoc
BuffStart+2
UnPLoc+2
tUnPLoc ;Ptr to unpack Ptr
t$7000
UnPSize

PushLong tUnPSize;Size unpking area
_UnPac kBytes
PLA ;Trash actuals

Move it up in memory
LOA BuffStart+2;Src(unpkd loc)
PHA
LOY
LOA
ADD

unpacked portion
PHA

ExitConv

carry flag

PushLong
PushLong

BlockMove

anop
LDA

PLB
UNLINK

t8
[<cvParms],Y; Size of pkd
BuffStart ;offset into

Buff Start
t$7000

tO

;Destination
;Length

; Clears

RTL

; Local storage

BuffStart DS
PackSize OS
RNewSize DS
UnPloc DS
UnPSize DS

END

InitMenus

4

4

4

4

2

;Memory Start Pointer
;Size of pac ked porti
;New Size of Handle
;Unpacked l ocation
;Size of unpked porti

Creates our list of menu items.

InitMenus START
USING

AuxCode
Menu Tables

Insert my menu lists / items

InitStuff

PushLong to
PushLong tMenu2

NewMenu
Push Word to

InsertMenu

PushLong to
PushLong tMenul

New Menu
Push Word to

InsertMenu

PushWord
_FixAppleMenu
WordSpace

FixMenuBar
PLA

DrawMenuBar
RTL
END

;File

;Apple

;Apple Menu ID=l

; Adjust internal

; . . . And draw it

Init the Tool Sets and program g l obal v a riable s .

InitStuff START
USING

AuxCode
GlobalData

TableSize EQU
tool array

TTend-ToolArray;Size of our

_TLStartUp
IMStartUp

_TextStartUp
_ADBStartUp
WordSpace
_MMStartUp
PLA

STA

LongSpace
LOA
ORA

PHA

PushWord
PushLong

; Do it by the book

;space for ID
;Memory Mgr now up
;Get Master ID

>MasteriD

;Space for SSRecord
>MasteriD
i$0100;Private Tool ID num

tO ;Pass Pointer Verb
tToolRecord

StartUpTools
ErrorDeath ' Cant load needed tools'

PullLong >SSReference;save reference
;for quitting

Install Converter for our picture

PushLong
PushWo rd
PushWord

iPic tConvert ;Our Routine
trzMyiD
tl ;Log in

ResourceConverter
ErrorDeath 'Converter Login failure'
RTL

; Tool Record is here

ToolRecord ENTRY
DC
DC

I'O'
I'$4080';640 Mode, FastPort

DC I'20,$0000' ;Line Edit
DC I'21,$0000' ;Dialog Manag
DC I'23,$0000' ;Standard Fil
DC I'22,$0000' ;Scrap Manage
DC I'S,$0000' ;Desk Manager
DC I'28,$0000' ;List Manager
DC I'27,$0000' ;Font Manager

TTEnd anop

END

ShutDown

Shuts down all the tools , relea ses me mory,
and gracefully quits back to launcher.

ShutDown START
USING

AuxCode
Global Data

PushWord iO ;Shut down array-based t oo
PushLong >SSReference

ShutDownTools

PushWord >MasteriD ;Dispo se of me
MMShutDown
ADBShutDown

Text ShutDown
IMShutDown
TLShutDown

;All the rest, too

_QuitGS
BRK

QuitParms ; .. . and shut 'er do
$FO

; Quit parm table

;no shadowing QuitParms DC
DC
DC

I'2'
I4'0'
I'$0000 '

;pcount
OS

DPHandle OS
DC

ToolArray anop
DC
DC

check)
DC
DC
DC
DC
DC

2 ;Resource ID space
4 ;Direct Pg Hndl spc

I ' TableSize/4';t of Toolsets
;in Table

I'3,$0000' ;Mise Tools
I'4,$0301' ;QuickDraw (5.02

I'18,$0000';QuickDraw Aux
I'6,$0000' ;Event Manager
I'l4,$0000';Window Manager
I'16,$0000';Cntrl Manager
I'15,$0000';Menu Manager

END

MenuTables

Used by InitMenus.

MenuTables DATA AuxCode

;no nex t applic ati
; can't restart

USING Global Data

Menu1
DC
DC

anop
C'>>@\H',I'AppleMID',C'X',I1'CR'
C'ttAbout Picture

Show ... \H' ,I'AboutMID' ,l1'CR'

Menu2

DC
DC

anop
DC
DC

C'tt-\N400D' ,I1'CR'
C' .. '

C'>> File
C' UShow

\H' ,I'FileMID' ,I1'CR'

Picture\VH' ,I'ShowPMID' ,I1'CR'
DC

C'ttQuit*QqH',I'QuitMID',I1'CR'
DC C' .'

END

GlobalData

Mostly equates, Mostly used by all.

GlobalData DATA

rzMyiD GEQU
rzPict GEQU
GSOS GEQU
ReadGS GEQU
CR GEQU

; Global variables

MasteriD DS
SSReference DS
QuitFlag
temp
anyhow

LocalHRec
lWhat
lMessage
lWhen
lWhere
lModifiers

DS
DS

anop
DS
DS
DS
DS
DS

$0020;My private user Res ID
$00000001;Type for packed pict
$E100BO;Stack-based entry pain
$2012 ;GS/OS Read command

$0D ;You guessed it

2 ;Mstr ID from MMStartUp
4 ;Start/Stop tool ref
2 ;Quit Flag
16 ;Temp for anyone to use

2
4

4

4

2

;Event Code
;Event Result
;Ticks since Startup
;Mouse loc (global)
;Status of Modifier

; Menu Bar References

About MID GEQU
ShowPMID GEQU

256
257

;Menu Item !D's

QuitMID

FileMID
AppleMID

GEQU

GEQU
GEQU

; Event Management

TaskRec
What
Message
When
Startup

anop
DS
DS
DS

Where DS
Modifiers DS
TaskData DS
TaskMask DC
LastClTick DS
TickCount
ClickCount DS
TaskData2 DS
TaskData3 DS
dn
TaskData4 DS
LastClPt DS

DS
wlnMenuBar GEQU

END

Listing two:

258

2
1

2
4
4

4
2

;Menu ID' s

;Event Code
;Event Result
;Ticks since

; Mouse loc (globe:
; Status of Modifj

4 ;TaskMaster Data
I4'$001FFFFF' ;Mask Bit
4 ;Last Click

2 ;Click Count
4 ;Control Handle
4 ;part code mous Uf

4 ;Control ID
2 ;Last Click Point
2 ;Last Click Point
$0011 ;In Menu Bar

*
*
*
*
*
*
*
*

Res.Maker

*
*
*

A custom resource maker.

By Joe Jaworski 4/19 / 90

*
*
*
* ORCA/ M Assembler 1.1

*
*
*

KEEP
MCOPY

RESMAKER
RES.mac

Main Code

rzMyiD
rzPict
pict

START

GEQU
GEQU

PHK
PLB
CLD

$0020 ;My private Res ID
$00000001;Type for packed

Initialize the few tools we need

_TLStartUp
WordSpace
_MMStartUp
PLA

STA
_MTStartUp
PushWord

;Tool Locator

;Memory Manager

MasteriD
;Misc. Tools

MasteriD ;Resource Mgr
_ResourceStartUp

_OpenGS
ErrorDeath

LongSpace
PushLong
LOA
ORA

PHA

PEA
PushLong

NewHandle

opParms;Open the pic file
'Cant open file'

;Allocate memory
opEOF ;Exact file size
MasteriD
f$0200 ;make it private

$COOO;lockd,fixd,anywhere
itO

ErrorDeath 'NewHandle failure'

PullLong
De ref
Copy4
LOA
STA
STA
LOA
STA
STZ

ReadGS
ErrorDeath

CloseGS

PcHandle ;Recover handle
PcHandle ;Dereference
<O,RBuffer;Copy buffer pt
opRefNum ;Copy Refnum's
rdRefnum
Clrefnum
opEOF ;Copy file size
RCount
RCount+2
rdParms ; Read the file
'Read Failure'
ClParms ;Close it

; Create the Resource fork

CreFork PushLong it$0000 ;No Auxtype
PushWord f$0000 ;No Filetype
PushWord f$0000 ;No Access
PushLong itAppName ;Filename

CreateResourceFile

Open the Resource fork

WordSpace
Push Word
PushLong
PushLong

it$0003
itO
fAppName

_OpenResourceFile

;Access
;No header
;Filename

ErrorDeath 'OpenResource fatal'

Pull word ResFileiD ; Recover Res ID

Attach the Picture file (now in memory)

PushLong PcHandle ;Resource Handle
Push Word it$0300 ;Purge level 3
Push Word itRzMyiD ;Resource ID
PushLong frzPict ;Resource type
AddResource

ErrorDeath 'AddResource fatal'

Push Word
Push Word
PushLong

f$0800
#RzMyiD
#rzPic t

SetResourceAttr

;Set Converter bit

Done- Quit and return to the shell

Push Word ResFileiD ;Close it up
CloseResourceFile

PushLong PcHandle
_DisposeHandle

ResourceShutDown
MTShutDown

PushWord MasteriD
MMShutDown
TLShutDown

;Free memory

;Mise Tools
;Dispo se o f me

RTL ;Use QUIT here f o r 816 fil e

; Scratchpad and variables

MasteriD DS
MMStartUp
ResFileiD DS
PcHandle DS

AppName STRL
Name (Class 1)
PictName STRL
name (Class 1)

2

2

4

; Master ID from

;Resource ID returned
;Picture-in-memory Handl

'Picture.Show' ;Application

'Res.Pict' ;Picture File

; OPEN Parms for Picture File

opParms
opRefnum

DC
DS
DC
DC

I'12' ;PCount
2 ;Returned Refnum
I4'PictName' ;Ptr to Pathname
I'$0001' ;Access (Read Only)

DC !'0' ;Fork (Data)
OS 2 ;Returned Access
OS 2 ;Filetype
OS 4 ;Aux Type
OS 2 ;Storage type
OS 8 ;Creation Date
OS 8 ;Modification Date
OS 4 ;Option List Pointer

opE OF OS 4 ;File Size

~---------------------, :Meet Other Apple II Developers!:
1 See and hear about the latest Apple II 1
: hardware & software developments :

: Attend Apple's llgs College :
I I
I l'l:Jr mo« attendees, IT!Jflelf lnduded, the lly popular demand, we're putting I

; READ Parms for Picture File

Developer& Conference hosted by A2· together another A2·CeJJtra/ S11••er
I CeJJtral /n July 1989 WH an experience Collli!nllce (popularly known In developer I
I bordering on the rellglou8. circles as 'Kansasrest'). Like last year, I
I 601 Kennedy, Technk:allldlt.or, /nC/d~ Apple Ill sending a number of Its engineers I

to do seminars and to run a bug-busting
I Wltbo .. exceptJon, evety attendee I have room. Unlike last year, Apple Is holding a I
Ita/lied to fee/a the flrat A2·CeJJtul llgs College at Avila the day before our 1 rdParms DC

rdRefNum OS
RBuffer OS
RCount OS

OS

!'4' ;PCount
2 ;Refnum (filled-in)
4 ;Data Buffer (filled-in)
4 ;Number of bytes to read
4 ;Returned transfer count

Detdopen CollfereJJCe at Al'ila Collflle In nf lll.arts.
IKansaa City was a succe55. The retreat co In~~ to speakers from Apple, we'll I
I atmosphere WH a s/gnlllcant factor In have talks and demonstrations by active I
I making It so. developers willing to show t heir trlcks.l
I CecU l'retweU, Technlcallldltor, Call Apple There will be talks and exhibits by I

co~anles that provide tools to developers. I 1 As I look bac:ll. I wa& the ni08t positive
comp .. ~ conf~ence 1 have ev~ been to And there wUI be plenty of lime to talk to

I other developers. I and I certainly recommend It to anyone
; CLOSE Parms for Picture File I with an /!X.erest In the Apple II line. Yes, I You must register by June I to get the I

best prices, which begin at $~00 and I I had a great Ume; yes, lleamed a lot; yes, 1 Include all meals. For more Information,

ClParms
ClRefNum

DC
OS

END

I' 1' ;PCount I met some owtandlng people; and, yes, I'll call A2-Ce1Jtral at 915-469-6502 (voice). I
go back.

2 ;Refnum (filled-in) I AI Hartin. lldlt.or, The Road Apple 915-469-6507 (fax) or write PO !lox 11250,1

I Overland Park, KS 66207. Or we'rel

.<· ..
. .· . .

Til~ ..• ~'-"" ·rulrk""lnt

A2.CfJ'fl'RAL on AppleUnk and .u.arm\AL
I onO~~ I
I A2-Central Summer Conference I

: Avila College, Kansas City, Mo. :
I July 20 & 21, 1990 I
L---------------------~

.{ ·:· '::: .::}/' ' { ·-::}~::::. . •.·.·::

tnll~~\iiii''''I'Anlt ~t your WM'~l W; ar~ ,fhe publiiher .•••. ,·,·
d S~ft~is~ G-~;Mj pali of m()nfhly < ,,,,,,: ,,·,,·,,,, ,,,,,,,.,., ~~~~~!1~j~~!!;ct!:.l ·····················
. ctioris sold ~v subsH!ptioli; .·•· :, Ir , ••••••••• ~~~~~~~~~~·!~~ ··········· newsstands inJ;ool~stctres ev~rywhere. V(~, , ,qie looking ··.:· ·

f9tJI)p-notch We respp!d .pio~ptly,)pay i
w~!l, q~d gre. ac"~l~l~ l~l~t~~·,, ,~ wi,th! .· ... ·. ·.·.·.. .· . .. ·.·· .. , .•••... ••••••• :::.:, .. • ..

"''''''11nc..:a; Nothingf You co:~d ~~e
so11tWgrg IU!~IIIsht~d a~~ iar~ cold, batd ctt$h.

cnttw,nr.:a tof)

••••••••••••••••••••••••~ ~Th ZB . Z I ~·••• ·~·~·~~~~r~~r~r• ~r~r•~ -~~~· ~L. - ~~e-·a111s.lc-e111a .. ol'!:t,......___Jr -~~·rl'.•.•.-.-.-.-.-.~.-.._. . ._._._.

The Pascal Protocol and You

A Modest Proposal
by Ross W. Lambert

Part I - The Wherefore and the Why

This may be a ZBasic column, but this month everybody
should read at least the first part of it. I'd like to make
a suggestion for the organization of assembly language
routines we print so as to increase their usability by high
level language programmers of all stripes (and perhaps
even other assembly junkies). Though this article will
deal with things in an 8 bit context, the idea is even more
important for Ilgs code.

As a preface to it all, it is important to understand that
a compiler is really a general purpose machine code
generator. Whether you are using ZBasic on a 128K lie
or Orca C on a 2 megabyte Ilgs, the compiler cannot
always generate the "absolutely positively" most effi
cient code possible to accomplish your task. Thus, even
in this modern age of speedy CPUs and acres of RAM,
custom assembly language is still sometimes the best
means to any given end. (A momentary aside: I believe
that hardware technology is presently outpacing soft
ware technology. The efficiency and speed of any given
piece of software is at least as dependent on the software
as the hardware. In fact, MacThtor ran a piece a few
months ago pointing out the truly inefficient code
pumped out by several of the popular Mac compilers.
My point: an optimized Ilgs program can outperform
many Mac applications in several key areas. More
importantly, an optimized Ilgs program can make other
Ilgs programs look like they're mired in cement.)

Back at the ranch, let's look at the difficulty we can
encounter mixing high level code (in this case, ZBasic)
with assembly language. My case in point shall be Tom
Hoover's excellent AppleWorks™-style input routine
from the May, '90 issue.

With a few bytes worth of phenagling on my part, Tom's
routine assembled to about 556 bytes. A functionally
identical routine Ariel distributes with ProTools tops
out at a whopping 4000+ bytes, the reason being that
it is all compiled ZBasic source code. This highlights
yet another advantage of assembly language - size.
With no extranneous JSRs, range checks, etc., assem
bly code can be relatively tiny compared to its compiled
counterpart.

Tom's routine began by assuming that the X and A
registers were "pre-loaded" with the prompt character
and the maximum length. This is a fairly common
practice amongst those who live and die in the rarefied
airofthe all-assemblylanguageworld. Unfortunately,
most high level languages do not have commands
which load the registers of the CPU with a value. That
is a pretty low level function, hence incorporating Tom's
routine with ZBasic (or a similarly constructed Ilgs
assembly routine with Cor Pascal or anything else) is
problematic.

''Everybody should read at least the
first part of this ... "

Enter the Pascal calling protocol (gasp!) . Before 9,000
assembly junkies have me drawn and quartered, let me
point out that I freely admit that in some instances the
Pascal protocol is too slow and/or cumbersome. An

animation routine would die of old age if it had to
retreive parameters this way while in a loop. That is why
we are not absolutely mandating it. Conventions are
useful only as long as they are useful. We are making
but a modest proposal in hopes that more of our
assembly listings will be more accessible to more
people.

Wha Issit?

So, I already hear many of you asking, "Whazza Pascal
protocol?"

Apple IIgs programmers may not know it by name, but
they already use the Pascal protocol every time they
make a toolbox call. Well, almost every time. The Pascal
protocol is simply a mechanism for passing parameters
(such as rectangle boundaries, string lengths, etc.)
wherein you push the little buggers onto the stack and
JSR (or JSL) to the subroutine in question. It is called
the Pascal protocol because some guy named Pascal
invented it. (Ijoketh- its conventions are those used by
the Pascal language for passing paraemters.)

At this point it makes the most sense to start telling you
about how to implement the Pascal calling protocol
from ZBasic or another high level language. Instead I'm
going to digress and tell assembly language program
mers how to receive parameters this way (so they don't
have to read any farther). The rest of you can skip on to
Part II, You can bet your LIFO.

Pass the Parms, Please

As I mentioned earlier, Tom's original program expected
the two parameters to be passed in the X register and
the accumulator. To make both his code and your own
assembly language creations Pascal protocol compat
ible:

1 - Pull the return address off the stack and store it
somewhere temporarily (the 65C02 and 65816 opcodes
PLY and PLX are handy for this)

2 - Pull your parameters. Obviously, you must remem
ber that you will be pulling them down in the opposite
order the caller pushed them.

3- Push any parameters you want to return to th e caller.
Remember that your caller will be pulling them off in the
opposite order you push them.

4 - Push the return address back on top of the stack.
Watch out for the order of things, here, too. The high
byte (or word) goes on first, followed immediately there
after by the low byte (or word). I always messed this up
until I remembered one simple mnemonic rule: the low
byte should go on last. I've also discovered that the
seven dwarves had it right, too. ("Hi Lo, Hi Lo, we push
the parms and go ... ")

For Tom's input program. the revised opening sequence
looks like this:

Listing 1 - Pulling Parms from the
Stack

94 GetStr

95
96
97
98
99
100
101
102
103
104
105

106

ent

sty
plx
ply

pla
sta
pla

phy
phx

;Merlinese f o r makin g var
avail to other modules

yTemp ;to preserv e the Y regist
;pull return addr off s t a
; and sto r e i n X and Y

;top parm i s max l e n gth
MaxLength

;next parm is prompt characte

;push return addr bac k on sta
(in opposite order pulled!)

If you are writing for 6502s, you can temporarily store
the return address in the registers by using a PLA,TAY,
1YA,PHA sequence. Since the 128K version of ZBasic
only runs on enhanced lie's, lie's, or IIgs's, it was fair
game for me to expect a 65C02 or later chip. By the way,
if necessary, you can also store the return address at a
specific memory location and push it back on the stack
at any time.

This is exactly what you'd want to do if you need to pass
any parameters back to the caller; push the parms on
the stack before redepositing the retu rn address on top
of the stack. Like so:

Listing 2 - Returning Parms to the Caller there is a (LIFO) system stack that is pretty much
accessible by anyone at anytime. This is TiiE stack, and
we must be careful what we do to it or we can bring the

900 lda Parml;push vals to return to caller .. . entire system to its knees.
901 ph a
902 lda Parm2
903 ph a
904 lda Return+l;THEN push return addr , high
byte FIRST!
905 ph a
906 lda Return
907 ph a
908 rts ;RTS takes us home

Part II. You can bet your LIFO

When programmers say "TiiE" stack we mean some
thing a little different than when we say .. A" stack. Let's
look at the general case first .

A stack is simply a data structure where data items are
stored in order, one right on top of the other (see Figure
1). A little beast called the "stack pointer" keeps track of
the top of the stack. Since there is usually a limit to the
size of the stack, if software tries to put too much data
on it we get what is called a "stack overflow" (does that
have a familiar ring to it?) Furthermore and most
importantly, the type of stack we want to talk about is
arranged such that the first item removed is the last
item deposited. The acronym for this arrangement is
LIFO, for Last In First Out.

Roger Wagner's restaurant analogy is the best one I've
heard; imagine the spring loaded stack of plates com
mon to so many Denny's, International House of Pan
cakes, etc. If the busboy puts 30 clean plates on the
plate stack, all the plates below get squished down
somewhere below the counter. When the waitress
comes by she grabs the top three or four plates, thereby
removing the last items deposited. The plates immedi
ately below spring up, anxiously awaiting their moment
of glory. This is just like a LIFO stack.

There are other kinds of stacks (FIFO, FIDO, HARPO,
GROUCHO), but we'll leave them for another day.

You can create your own stacks for your own private
uses, but in an Apple II (and most other computers)

A real world example

Let's use the Pascal calling protocol as an example. If
I try to write a ZBasic function that pushes parameters
onto the stack (which I did). I immediately run into a
problem (which I did). Whenever a program needs to
temporarily transfer control elsewhere, which is the
case with a function or subroutine, it pushes the "home"
or "return" address onto the stack (minus one if you
want to be picky) and then starts executing at the new
location. When an RrS, RETURN, END FN, or some
similar statement is encountered, the machine yanks
the return address down off the stack and jumps back
to that place in memory. If you're a really tricky and
gutsy person, you can change the return address on the
stack on the fly and have a program return to some
place other than whence it came. This is not for the faint
of heart and is not germaine to the discussion at hand,
although it is sorta fun.

Back to the point, if my ZBasic function merely pushes
parameters on the stack, it will make the top items of the
stack the parameters just pushed and NOT the return
address. This is not good. It made my program jump
into the midst of an array where it died a miserable
death. This is why we must be careful with the stack.
Under certain conditions it determines program flow.

''Both halves of a 128K machine
running under ZBasic are therefore
connected by the same stack and
zero page."

To create a ZBasic function that pushes a value onto the
stack, I had to "lift up" the return address for the
function itself, deposit my values, and then set the
return address back down on top. By doing business
in this manner the function didn't self-destruct when it
finished.

Figure 1- a LIFO stack (uh, this is really upside down compared to
the way things really sit in RAM, but I don't care.)

current top of stack

bottom of stack

Since ZBasic (and most high level languages) don't have
register oriented commands, it was imperative that I
invoke some in-line assembly via the MACHLG state
ment. In doing this I discovered some things that will be
of great interest to those of you who like to mix assembly
language and ZBasic.

I got a secret ...

First, the "dual bank" paradox of the 128K version of
ZBasic makes a lot of assembly types dizzy. The key
thing to remember is that the variable space is in main
memory and the program space is in auxiliary memory.
If you try to write in-line assembly with a MACHLG
statement. the code is part of the ZBasic program
proper and will be running in aux mem. The confusion
stems from the fact that if you BWAD an assembly
routine into a buffer created in the variable space, it will
be humming merrily along in main memory.

Most of us use the BLOAD technique to pull in external
assembly language functions, so how in the world do we
get a program running in aux mem to pass parameters
to a program running in main mem?

A stickey wicket- until I found out that ZBasic leaves
main memory zero page and stack active at all times
while your application is running. Keep in mind that the
whole environment is fluid when you drop back into the

0 stack pointer

editor: things are moving around all over the place.

Both halves of a 128K machine running under ZBasic
are therefore connected by the same stack and zero
page. With that out of the way, it was an easy task to
send any arbitrary variable to a zero page location and
push it on the stack for use by someone else's subrou
tine.

The true byte scroungers amongst you will have realized
by now that one important implication of all this is that
we have uncovered a heretofore unknown 512 byte
block for programs or data living in aux mem (i.e. the
aux mem stack and zero page, $00-$1FF). Though
tricky to use, it can really be nice to have it available
(especially since zero page memory is so precious!).

Here's what FN PushByte looks like with the assembly
opcodes along side the Zbasic code:

Listing 3 - FN PushByte

LONG FN PushByte (Byte)
Zpg = PEEK WORD (6) :REM
POKE ZPtr,Byte :REM
MACHLG &FA :REM
MACHLG & 7A :REM

MACHLG &A5,&06 :REM
MACHLG &48 :REM

save zero page stash
store in zero pg scrat
plx ;pull return addr
ply

lda $06 ;get byte into
pha ;push it

return address of

subroutine or
function

old top of stack

bottom of stack

Q stack pointer Q stack pointer

;t-, lift up return address and
""" slide these in underneath!

Figure 2 - Return Address Storage and Passing Parms

MACHLG & SA : REM
MACHLG &DA :REM
POKE WORD 6,ZPg :REM

END FN

phy ;restore ret addr
phx
restore zero pg

You'll notice that I saved and restored the zero page
locations used. This may not be strictly necessary since
I believe the locations involved, bytes 6 and 7, are
primarily scratch space. But I seem to recall Greg
Branche (the primary developer of the ProDOS version
of the language who now works for Apple, Inc.) remind
ing folks on GEnie to " .. .leave my zero page memory
alone". lthinkZBasic makes extremely heavy use ofthe
zero page, so it is safest to clean up any messes made
there. Removing the lines that save and restore these
bytes would speed up the function considerably if you
need it, but you do so at your own risk.

Since some of the routines we print may need to pass a
value back to the caller, we also need a mechanism for
retrieving values off the stack. Enter FN PullByte:

Listing 4 - FN PullByte

LONG FN PullByte (DestAddr)
Zpg = PEEK WORD (6)
POKE WORD ZPtr, DestAddr
MACHLG &FA REM plx ;pull off return addr
MACHLG &7A REM ply

MACHLG &68 REM pla ;pull byte off stack
MACHLG &SA REM phy ;Y part of ret addr
MACHLG &AO,&OO: REM ldy #0 ;init y register
MACHLG &91,&06: REM sta (06) 'y ;indexed indire

REM ;to dest

MACHLG &DA REM phx ;push X part of ret ad
POKE WORD 6, Zpg

END FN

It is certainly possible to call FN PushByte and FN
PullByte repeatedly to push and pull word length (2
byte) values on and off the stack, but as it happens this
is significantly slower than a customized word length

function. Since many parms are word length, and since
speed may be important, I therefore offer FN Push Word
and FN PullWord

Listing 5 - FN PushWord and FN PullWord

LONG FN PushWord (Pointer): REM gimme addr of
:REM word-len val

Zpg = PEEK WORD (6)
POKE WORD ZPtr,Pointer :REM store pointer

:REM source in zero pg
MACHLG &FA :REM plx ;pull ret addr
MACHLG &?A :REM ply

MACHLG &AS,&07 :REM lda $07 ; hi byte 1st!
MACHLG &48 :REM ph a ;push on stack
MACHLG &AS,&06 :REM lda $06 ;get lo byte
MACHLG &48 :REM ph a ; & push on stack

MACHLG &SA :REM phy ; restore ret addr
MACHLG &DA :REM phx
POKE WORD 6,Zpg

END FN

LONG FN PullWord (DestAddr)
Zpg = PEEK WORD (6)
Zpg2 = PEEK(8) :REM we need one more zpg

POKE WORD ZPtr,
MACHLG &FA
MACHLG &?A
MACHLG &84,&08

MACHLG &68
MACHLG &AO,&OO
MACHLG &91,&06

MACHLG &68
MACHLG &CB
MACHLG &91,&06

MACHLG &A4,&08
MACHLG &SA

:REM byte for scratch spc
DestAddr

:REM plx ;pull return addr
:REM ply
:REM sta $08;stuff 2 scrch

:REM pla ;pull lo byte
:REM ldy tO ;init y reg
:REM sta (06),y
:REM ;indxd indrct to dest
:REM pla ; pull hi byte
:REM iny ;inc Y register
:REM sta (06),y
:REM ;indxd indrct to dest

:REM ldy $06 ;retrieve Y
:REM phy ;restore ret addr

MACHLG &DA :REM phx
POKE WORD 6,Zpg:REM rest. 0 pg bytes 6-8
POKE 8,Zpg2

END FN

to

If you think back to the early parts of this article. the
issue that sparked it all was that I wanted to convert
Tom Hoover's AppleWorks-style input routine such that
it could be accessed by ZBasic programs. The program

listing below accomplishes that goal, but it assumes
that you've already typed in FN PushWord, FN
PushByte, FN PullWord, and FN PullByte. It also
assumes that you've made the beginning of Tom's
program comply with the Pascal calling protocol. If you
have the Merlin assembler. just make the changes I did
in the opening lines of code of the program (c.f. Listing
1). By far and away the best idea with the least amount
of work is to buy the June disk (if you don't already
subscribe). I'll have the object code and the revised
source in the ZBasic folder. Individual disks are $8.00,
but if you are really only interested in that one file, send
us a self-addressed stamped envelope and a blank,
formatted disk, and we'll copy the file over you and
retum your stuff. Please allow 3 - 4 weeks.

There is one other important thing to note: Tom's
original code was a rei module. meaning that Merlin
would resolve the address references when it was linked
with all the other modules in a program. This a really
neat way to put together assembly code, but it leaves
high level languages out in the cold. I remedied that by
ORGing it to $9DCC and making the first Hne of my
ZBasic DIM statements look like this:

DIM InputLoc,InputLoc(280)

The InputLoc() array is our buffer for the AppleWorks
input routine, and InputLoc is going to eventually tell us
where the buffer starts (via the VARPTR statement). In
this fashion you can determine where your assembly
code is going to eventually live and then ORG it appro
priately. The only caveats are that you must reORG and
reassemble your assembly code if 1) you change the
position of the DIM statement, or 2) you reconfigure
ZBasic such that you allow more open files. Such a
reconfiguration changes the variable space and thus
the position of your buffer. Fixed position assembly
routines will choke if they're not ORG'ed to run at the
right spot.

FN Superlnput$

I call Tom's input routine FN Superlnput$. The calling
syntax is a tad odd, but it serves a purpose. Here's what
it looks like:

FN Superinput$(X,Y,MaxLength,PromptChar,DefPtr)

The first parameters are easy; they are the horizontal
and vertical positions of the beginning of the input line

in text screen coordinates. As Tom pointed out last Listing 6
month, positioning the input is important for long
input lines since word wrapping is not supported. REM -------

The third parm is the longest input you are willing to
accept, and the fourth is the ASCII value of the char
acter you would like for a prompt. A typical Apple
Works prompt is the greater-than sign(">") . Note that
this is not the same as the cursor character. The
prompt character sits immediately to the left of the
input line.

The last parameter, DefPtr. is the address of the
default string. If you have no default string, pass the
address of a null string. You can derive the address by
using VARP1R, of course.

Why pass the address when you could pass the actual
string? Well, for one thing it saves a little memory -
there is no extra string required for use by the function
itself. For another thing we must move the results of
FN Superinput$ into a variable somewhere, and using
the original string saves a step and just generally
makes things go a little faster.

An important "gotcha" here: the string whose address
you pass to the function will end up holding the result
of the input. You must make certain that this string is
DIMensioned to a length one byte greater than the
MaxLength you specifY for the input. The extra byte is
for the leading length byte, by the way. If your target
string is not sufficiently DIMmed, the input routine
could overwrite other variables.

Conclusion

I am not too proud to say that Tom's Apple Works-style
input routine is a better altemative than the FN
Smartinput$ we distribute with ProTools. I've been
meaning to write a routine like this in assembly for a
long time, but since he beat me to it I'm glad for the
time saved! You'll notice that FN Superinput$ is
suprisingly short, even if you count the FN BLOAD
(necessary to read it in). This code will give you
slightly better functionality, greater speed, and more
program space since it is 3.5K smaller.

I hope you ZFans have as much fun with it as I have!

Next Month: Local Variables!!! Stay tuned.

REM AppleWorks-Style Line Input
REM for ZBasic
REM
REM All hard work done by
REM Tom Hoover
REM Copyright (C) 1990
REM Ariel Publishing
REM Some Rights Reserved
REM
REM Pascal calling protocol for
REM ZBasic by Ross W. Lambert
REM
REM ------------- --------

REM Default variable type is integer, expressions
REM optimized to integer, & convert to case is NO.

REM ------------ --
REM DIMension stuff
REM ------------

DIM InputLoc,InputLoc(280)
DIM 65 Path$, 2 Prompt$, 40 The String$

REM ------------
REM A few lonely equates
REM ------------

InputLoc VARPTR(InputLoc (O)) : REM calc BLOAD a d
PgMovLoc 780
Prompt$ = ">"
OurCH = &0578
ZPtr = 6
InBuffer = &200

REM like AppleWorks
REM horz cursr pos on 80 col s c

REM --------
REM Define Functions
REM --------

REM The FN PushByte function from article must be
REM included here!!!!! (Listing 3)

REM This is straight from ZBasic disk but properly
REM modified for the 128K version

LONG FN BLOAD (Path$,FileNum,Address,Length)
Buffer = &ACOO - (FileNum * &400)
POKE WORD &lFOl, VARPTR(Path$)
LONG IF Address = 0

POKE &lFOO,lO
MACHLG &A9,&C4,&20,&0865

Address
END IF

PEEK WORD (&1F05)

IF Length 0 THEN Length = &FFFF
POKE WORD &1F03, Buffer
POKE &1F00,3
MACHLG &A9,&C8,&20,&0865
POKE &1F01,PEEK(&1F05)
POKE &1F00,4
POKE WORD &1F02,Address
POKE WORD &1F04,Length
MACHLG &A9,&CA,&20,&0865
POKE &1F00,1
MACHLG &A9,&CC,&20,&0865

"End Bload" END FN = ERROR :REM set implicitly
by ZBasic

LONG FN
Superinput$(Xpos,Ypos,MaxLength,PromptChar,
DefPtr)

PromptChar = PromptChar-128
bit for prompt character

LOCATE Xpos,Ypos
cursor

REM clear high

REM position

POKE OurCH,PEEK(OurCH)-1 REM bump counter

LONG IF PEEK (DefPtr) > 0 REM we got a de-
fault string? (length byte > 0)

: REM Move default string to input buffer
FOR X= 1 TO PEEK(DefPtr)
: REM assembly module expects high bits set

POKE InBuffer+X,PEEK(DefPtr+X) + 128
NEXT
POKE InBuffer,PEEK(DefPtr) : REM don't forget

to move length byte
XELSE

POKE InBuffer,O REM tell rtn no de-
fault

END IF

REM push parms for actual input routine call

FN PushByte (PromptChar)
value

FN PushByte (MaxLength)
value

CALL InputLoc

REM pass literal

REM pass literal

: REM call input rtn

REM now move data from back to string

FOR X = 0 TO PEEK(InBuffer)
POKE DefPtr+X,PEEK(InBuffer+X)-128 :REM clear

high bits for ZBasic
NEXT

END FN

REM----
REM Start of program
REM----

MODE 2

FN BLOAD ("Input.Obj",1,InputLoc,O)
PRINT@(1,2);"A better line input routine: "

TheString$ = "This is a default string."
Prompt$ = ">"
MyString$ = FN

Superinput$(2,5,35,ASC(Prompt$) ,VARPTR(TheString$)

PRINT@(1,7);"You typed: ";TheString$
END

Ml.croDot just$ 29.95
plus 52.50 S&H

Just 2.5K in size, but more powerful than BASIC.SYSTEM.
Imagine doing BASIC overlays simply by specifying the file
name and the line number where you want to overlay. How
about loading an array of directory names at machine lan
guage speed. You get this and total control over ProDOS
that is impossible with BASIC.SYSTEM. Works with Pro
gram Writer ($42.45. Bothfor$59.95+S&H). Loveitorget
your money back! Inexpensive publishers' licenses.

- Dealerlnqu1neslnv1ted

Kitchen Sink Software, Inc
903 Knebworth Ct. Dept. 8
Westerville, OH 43081
(614) 891-2111

·······················~ ~ ~-······················ • • • •~• • • • .r .. ~~ .r.r.r.r• ·~~ • m ·~~ .r.r.r.r.r .. ~ ·~~~·~•~•

VAPORWARE by Murphy Sewall
From the May 1990 APPLE PULP,H.U.G.E. Apple Club (E. Hartford) News Letter, $15/year,P.O. Box 18027
East Hartford, CT 06118 Call the "Bit Bucket" (203) 569-8739

This is the 6th anniversary edition of this column

Can You Say October?
Although Apple officials continue to describe Macintosh System 7.0 in public as "on schedule," private sources close
to Apple say the project is falling two or three days behind schedule each week and a release before harvest time is
unlikely. If a version is announced this summer, it will be missing some of the anticipated features (which will become
"Christmas presents"). -Info World 9 April

New Apple II (Continued).
Apple llgs owners saving up for a new ROM 04 machine will have to save for a new monitor too. Current Apple llgs
monitors will flicker on the new machine which will have interlaced graphics. Apple's "rethinking" of the II line's future
is still said to be inconclusive, but insiders feel certain that the ROM 04 machine will be introduced- eventually. -found
in my electronic mailbox

Brier to Ship 20 Mbyte Floppy.
Brier Technology has begun shipping their 20 Mbyte floptical drive (see the September and October 1988 columns) to
manufacturers last month. A consumer version called the Stor/Morwill be shipped by 0/Cor (formerly Ouadram) in June
(about 18 months later than originally anticipated) . An internal (AT bus) unit will sell for $795, an external (AT or SCSI)
will be $895 and an external with MCA adapter will cost $995. Average access time is 35 milliseconds, and preformatted
3.5 inch floptical disks will be $25 each. -Info World 9 April

The NeXT Macintosh?
Steve Jobs and John Sculley have been spotted in each other's company recently. Rumor has it that acquisition of NeXT
by Apple (or perhaps the other way around?) has been on the agenda. So far Apple's board of directors have said "no"
to any proposed deals.- lnfoWorld and PC Week 16 April

Intel CPU Evolution.
Additional details about Intel's i586, i686, and i786 processors seem to be appearing quarterly (see last August, October,
and January's columns). Production of the two million transistor i586 is forecast for 1992 (please allow for usual "va
porwre" slippage; that date already is a year later than predicted last July). The chip will measure 2.5 inches by 2.5 inches,
and performance should be more than twice that of the i486. It will have two caches, one for instructions and one for data.
The four to five million transistor i686 is scheduled for 1996, and the spectacular one inch by one inch 100 million transistor
i786 is envisioned for the turn-of-the-century. According to Intel's David House, the i786 will contain four tightly coupled
parallel integer processors and two vector processors operating at 250 MHz and delivering 700 Ml PS. A two Mbyte cache
memory will supply the six processors and the bus interface will support digital video. -Info World and PC Week 26 March

Pen Input Systems.
Several major small computer makers and laptop vendors are on the verge of bringing out systems designed to let users
substitute a pen for keyboard and mouse, but development is limited by a paucity of software. Some developers say
that major applications that would let users really take advantage of pen input hardware still is a long way off. Slate
Corporations, a Scottsdale, Arizona start-up, is widely acknowledged as working exclusively on applications for pen input
systems. Slate has had little to say publicly about its activities- could they be the Ashton Tate or Lotus or the 90's? -
-lnfoWorld 16 April

+Standard disclaimer applies ("The opinions expressed are my own"etc.) +

•••••••••••••••••••••••~ B~asl·callyApplesoft ~··••••••••••••••••••••••
• Jr·~~· -~~~JrJrJr•~~~Jr· •••• ...-.., -....,~~----~,..----Jr ~r• -~~~ -~~~Jrlrlrlrlr~~~~

Taking a Screen Test

Jerry Kindall, Classic Apple Editor

Saving the text screen to disk was a fairly common technique
under DOS 3.3, though much of the software that did so
clobbered the screen holes Jerry mentions. His program,
however, writes to display memory only and is therefore a nice
evolution of a useful technique. -Ross

Here's an easy way to design fancy SO-column text
screens that you can display instantly in your Applesoft
program. And I mean instantly: your screens pop up
with machine-language speed. regardless of their com
plexity. No more waiting for your BASIC program to
draw intricate displays, and no more painful coding of
screen formats. ScreenMaker is a full-screen SO
column display editor which supports mousetext. in
verse. and normal characters, and saves screens to
disk in a form suitable for quick retrieval.

ScreenMaker is not a source code generator. It does not
convert your screens to an Apples oft program. Instead.
your screens are stored as binary files: compact, and
quick to load and display.

Using ScreenMaker To Design Screens

Listing 1 is ScreenMaker, the screen editor. Save it as
SCREEN. Listing 2 is the machine language code used
by ScreenMaker in hexadecimal form: just enter it from
the Monitor and save it as SCREEN .ML. Listing 3 is the
source code for Listing 2, for hacker types.

To get going, just RUN SCREEN fromApplesoft. A blank
screen with a flashing cursor will appear. To move the
cursor, press the arrow keys. Pressing a printable key
(letters, numbers, punctuation, and symbols) puts that
character on the screen at the cursor. Typing Control
M activates mousetext: while in mousetext mode, typ
ing an uppercase letter key (and the symbols@,[.).\,
". and _) displays a corresponding icon. Typing Con
trol-l displays characters in reverse video. Control-N
brings things back to Normal.

Control-S allows you to Save a screen. At the Save

prompt, you can type ? to see a directory listing, or
Return alone to cancel. Typing a valid ProDOS path
name saves the screen. Typing a l or a 2 saves the
current screen to one of two in-memory "scratchpad"
screens. which you can think of as a clip board. They can
come in handy when juggling multiple screens. Be
warned, however, that they disappear when you quit
ScreenMaker.

Control-Lis for Loading screens. Pressing Return alone
cancels: typing? displays a catalog. You can also load
from the scratchpad screens by typing l or 2. And, of
course. typing a valid ProDOS pathname loads the
screen. Typing Control-Z reverts to the last-loaded
version of a screen. undoing any changes you have made
since last loading or saving, including loads and saves to
the scratchpad screens.

Control-A and Control-Bare cursor controls. Usually.
the cursor is a flashing underline. You can change it to
a flashing inverse block with Control-B. and back with
Control-A. Changing the cursor is only cosmetic:
ScreenMaker does not have an insert mode. I included
this feature mainly to allow the cursor to stand out
clearly when editing different types of text.

Escape exits the program, confirming your intent first.
You have to type Yes (or just Y) to get out.

Using Screens In Your Programs

You can't simply BLOAD screens created with Screen
Maker and have them appear on the SO-column screen,
for two reasons. First, half of the SO-column screen isn't
stored in a location easily accessible to BLOAD. The odd
columns are stored beginning at location l 024 in main
memory: the even columns are also stored at location

1024, but they're stored in an auxiliary bank of mem
ory. The video circuitry displays both even and odd
columns on the same screen. but you can only access
half the screen (even or odd columns) at any given time.

The other, more important reason you shouldn't
BWAD screens is that the screen memory area con
tains undisplayed memory areas called "screenholes".
There are 2048 bytes of memory in the 80-column
display area, but there are only 1920 characters dis
played on the screen. The rest. the screenholes. are
used to store data for your peripheral cards. Changing
the screenholes can cause your hardware to do strange
things. So we can't simply BWAD screens. ProDOS
doesn't even begin to let you do it; if you try, you'll get
a NO BUFFERS AVAILABLE message, which isn't very
descriptive, but means that you're stepping on reserved
memory.

"Changing the screenholes can
cause your hardware to do strange
things. So we can't simply BWAD
screens."

So what we need to do is BLOAD screens elsewhere in
memory, then use the ScreenMaker machine language
routines to display them. The machine language rou
tines reassemble the main-memory and aux-memory
screen onto the display at blinding speed. being careful
not to step on the screenholes. You need a buffer
(memory area) 2048 (or 2K) bytes long.

A good place to load your screens is at 2048 (hex $800).
This area of memory is usually part of Applesoft's
workspace, so any programs that use it will need to
reserve it by running the following short program first:

10 POKE 103,1: POKE 104,16: POKE 4906,0
20 PRINT CHR$(4);"RUN your.program"

Once you've reserved that memory area, displaying
your screens is as simple as this:

1000 PRI NT CHR$(4);"BLOAD screen.name,A$800"
1010 CALL 775,8

The disk runs for a second or so, then the screen

appears. Although it actually takes a little longer to
display the screen (because of the disk access). it pops
up so quickly after it's loaded that you get an impression
of real speed. If you use a RAM disk there's not even any
noticeable disk access.

The 8 after the CALL 775 tells the machine language
routine that the screen is in memory at location $800 (it
knows the last two digits are always 0). or 2048 in
decimal. In technical terms, I'd say that it's the high
byte of the address of a page-aligned screen buffer. The
screen buffer can actually be anywhere in memory
within the limits of Applesoft. but it must be page
aligned (its address must be evenly divisible by 256). By
using multiple screen buffers you can have multiple
screens in memory. ready to be displayed with a single
CALL.

Once you've displayed your screen. you can use
Applesoft's usual commands to get input. display a
menu bar. or whatever. Think of your screen as a
template or a background on which your program's
screen 1/0 takes place.

Other Things You Can Do

If you'd like to save screens from some of your older
programs as screen files so they can be edited by
ScreenMaker, or just so they can be displayed faster,
just make sure that the ScreenMaker ML routines are
in memory and that a 2K buffer is available. If the buffer
is at $800. as in the examples above. adding lines like
the following to the program will save the screen to disk:

2000 CALL 768 , 8
2010 PRINT CHR$(4);"BSAVE screen.name,A$800,L$800

To use ScreenMaker's flashing cursor routine in your
own program, include a line like this:

3000 CALL 792,2 23: K =PEEK (- 1638 4) - 128: POKE -1636

The flashing cursor routine only waits for a key to be
pressed; it does not retum the key to Applesoft. The
code following the CALL reads the key's ASCII code into
the variable K and clears the keyboard strobe so that the
next key can be read. The 223 is the screen ASCII code
for a normal underscore, which will flash on the screen
until a key is pressed. (Add 128 to a character's ASCII
code for a normal character. Use 0-63 for inverse
letters, numbers, and symbols, 64-95 for mousetext

cursors, and 96-127 for inverse lowercase.)

Try creating "text graphics" with mousetext, then sav
ing a series of screens on a RAM disk and writing a
program to display them in quick succession for anima
tion. Or just wait for a keypress after each screen for a
text slideshow.

I use &reenMaker to "prototype" programs I'm working
on. It's a lot easier to work out the bugs in a program's
user interface when you can actually display how the
program will look on your screen. And screens make
great documentation when you want to show someone
else what an unfinished program will look like. I'll
include some screens from my current project on this
month's disk so you can see what I'm talking about.

You may be wondering why I didn't include a fancy title
screen or a help screen with ScreenMaker. C'mon,
people ... it's a screen editor. That means ADD YOUR
OWN! In &reenMaker. I set LOMEM to 24576 ($6000)
to give me from 2048 to 16383 ($800-$3FFF) for my
program and 16384 to 24575 ($4000-$5FFF) for four
screen buffers. The screen buffers are for the last
loaded or saved screen image (used for the Control-Z
command). a temporary buffer to hold the screen when
the screen must be used for something else, and the two
scratchpad buffers. Since the program is relatively
short, you could add additional screen buffers below
$4000 if you want. Or, since the program doesn't use
many variables, you could move LOMEM up a bit and
add a few more screen buffers above $6000. Either way,
you can add fancy "save" screens, title screens, "about"
screens. help screens. and whatever else you like.

&reenMaker could also use some more editing com
mands. By manipulating the text window you can add
commands to scroll a section of the screen up or down,
or to insert and delete lines. An easy one would be to add
commands for jumping to the extreme edges of the
screen (all you have to do is change the variables X and/
orY). If you're adventurous you might want to add the
ability to create "text objects" which can be repositioned
on the screen. Avid mouse users might want rodent
control. So many possibilities, so little time.

I won't go into the assembly listing. It makes my head
hurt at this time of the evening. It's pretty well com
mented; the only real trick I used was having a subrou
tine call a subroutine and then fall through into the
same subroutine. It's a limited sort of recursion. The
Applesoft code is pretty simple in structure. The only

tricky code is in lines 210-212. which handles printing
in the last position on the screen without scrolling. This
is done by actually printing in position 2 on the screen,
copying the screen character to its proper location. and
finally restoring the character that was originally in
position 2. Sneaky, but it works.

I wish you many hours of enjoyment in creating and
editing your screens. May your programs gain a more
professional appearance with ScreenMaker.

Listing 1: SCREEN

10 REM Screen Designer
20 REM by Jerry Kindall
30 REM ================
40 REM For 8/16 - Use Freely
50 REM
60 REM Init Program
70 REM
100 PRINT CHR$ (4);"PR#3": PRINT CHR$

(25);
110 SPEED= 255: NOTRACE : TEXT : HOME

LOMEM: 24576
120 PRINT CHR$ (4) ;"BLOAD SCREEN.ML,

A$300"
125 CALL 768,64: CALL 768,80: CALL 7 68,88
130 X= O:Y = 1:KB = 49152:KC = 49168
140 NM$ CHR$ (14) + CHR$ (24)
150 IN$ CHR$ (15) + CHR$ (24)
160 MT$ CHR$ (15) + CHR$ (27)
170 PRINT NM$; :C = 223
175 REM
176 REM Main Loop
177 REM
190 VTAB Y: POKE 1403,X: CALL 782,C
200 K = PEEK (KB) - 128: POKE KC,O
210 IF K > 31 AND Y < 24 THEN PRINT

CHR$ (K) ;:K = 21: GOTO 310
211 IF K > 31 AND X < 79 THEN PRINT

CHR$ (K); :K = 21: GOTO 310
212 IF K > 31 THEN I = PEEK (2000) : POKE

1403,1: PRINT CHR$ (K) ;:

220
230
240
250
260
270

POKE 2039, PEEK (2000): POKE 2000,I:K
= 21: GOTO 310
IF K 13 THEN PRINT MT$; : GOTO 190
IF K 14 THEN PRINT NM$;: GOTO 190
IF K 9 THEN PRINT IN$;: GOTO 190
IF K 1 THEN C = 223: GOTO 190
IF K 2 THEN C = 32: GOTO 190
IF K 19 THEN GOSUB 1000: GOTO 190

2SO IF K 12 THEN GOSUB 2000: GOTO 190
2S5 IF K 27 THEN GOSUB 3000: GOTO 190
290 IF K 26 THEN CALL 775,64: GOTO 190
300 IF K S THEN X= X - 1: IF X= - 1

310

320

330

340
sso
SSl
SS2
900
910

920
9SO
9Sl

THEN X = 79:K = 11
IF K 21 THEN X= X + 1: IF X
THEN X= O:K = 10
IF K 11 THEN Y
THEN Y = 24
IF K 10 THEN Y

1 THEN Y
GOTO 190
REM

y 1: IF Y

Y + 1: IF Y

REM Prompting for Save/Load
REM
PRINT P$;: INPUT "";A$
IF A$ = "?" THEN PRINT CHR$
(4) ;"CATALOG": GOTO 900
RETURN
REM
REM Save Screen

so

0

25

9S2 REM
1000 CALL 76S,72: PRINT NM$;: HOME
1010 P$ = "Save screen as: ": GOSUB 900
1020 IF A$ = "" THEN CALL 775,72: RETURN
1030 IF A$= "1" THEN CALL 775,72: CALL

76S,SO: CALL 76S,64: RETURN
1040 IrA$ = "2" THEN CALL 775,72: CALL

76S,SS: CALL 76S,64: RETURN
1050 PRINT CHR$ (4); "BSAVE"A$", A$4SOO,

L$S00"
1060 CALL 775,72: CALL 76S,64: RETURN
19SO REM
19S1 REM Load Screen
19S2
2000
2010
2020
2030

2040

2050

REM
CALL 76S,72: PRINT NM$;: HOME

P$ = "Load screen: ": GOSUB 900
IF A$= "" THEN CALL 775,72: RETURN
IF A$= "1" THEN CALL 775,SO: CALL

76S,64:X = O:Y = 1: RETURN
IF A$= "2" THEN CALL 775,SS: CALL

76S,64:X = O:Y = 1: RETURN
PRINT CHR$ (4) ;"BLOAD"A$",A$4000"

2060 CALL 775,64:X = O:Y = 1: RETURN
29SO REM
29S1 REM Quit
29S2
3000
3010
3020

3030

REM
CALL 76S,72: PRINT NM$;: HOME
INPUT "Quit? ";A$:A$ = LEFT$ (A$,1)
IF A$ < > "Y" AND A$ < > "y" THEN

CALL 775,72: RETURN
POP : END

Listing 2: SCREEN.ML
Enter all commands exactly as printed. Be
careful! You are entering important machine
language code.

CALL-151
0300: OS 7S 20 4E 03 2S 60 OS
030S: 7S 20 so 03 2S 60 OS 7S
0310: 20 4C E7 2C 54 CO AD 7B
031S: 05 4A BO 03 2C 55 CO AS
0320: B1 2S 4S SA 91 2S 20 3D
032S: 03 AA 6S 91 2S 4S SA 20
0330: 3D 03 2C 00 CO 10 ED 2C
033S: 54 CO 6S 2S 60 A2 00 2C
0340: 00 CO 30 09 20 4D 03 20
034S: 4D 03 CA DO F2 60 20 4C
0350: E7 2C 55 CO 20 5D 03 2C
035S: 54 CO A6 07 ES 20 B2 03
0360: 20 65 03 AO F7 A2 77 B9
036S: 00 04 91 00 B9 00 05 91
0370: 02 B9 00 06 91 04 B9 00
037S: 07 91 06 SS CA 10 ES 60
03SO: 20 4C E7 2C 55 CO 20 SF
03SS: 03 2C 54 CO A6 07 ES 20
0390: B2 03 20 97 03 AO F7 A2
039S: 77 B1 00 99 00 04 B1 02
03AO: 99 00 05 Bl 04 99 00 06
03AS: Bl 06 99 00 07 SS CA 10
03BO: ES 60 A9 00 S5 00 S5 02
03BS: S5 04 S5 06 S6 01 ES S6
03CO: 03 ES 86 05 E8 86 07 AO
03CS: 77 60
3DOG
BSAVE SCREEN.ML,A$300,L$CA

Listing 3: SCREEN.ML Source Coda

1
2

* *
3 * ScreenMaker ML *
4 * *
5 * by Jerry Kindall - 8/16 *
6 * *
7 ********************************
8
9

10
11

12
13
14
15
16

screenO
screen1
screen2
screen3

ourch

org $300

$400
$500
$600
$700

1403

;addr of screen pages

;80-column HTAB pointe

17
18 ptrO
19 ptrl
20 ptr2
21 ptr3
22 base
23
24 kbd
25 rdrnain
26 rdaux
27
28 combyt
29

$00
$02
$04
$06

;ptrs to save areas

$28 ;base addr of current line

$COOO
$C054;80-column bank- switching
$C0 55

$E74C;get comma and byte value

30 * CALL 768,X entry: Store A Screen
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

store php
sei
jsr
plp
rts

;save interrupt status
;disable rupts

savescrn ;actually save scree
;restore interrupts

* CALL 775 , X entry: Recall A Screen

recall php
sei

;save interrupt status
; disable rupts

jsr loadscrn;actually load screen
plp ;restore interrupts
rts

* CALL 782,X entry: Flash Cursor

cursor php

:bankok

)loop

sei
jsr
bit
lda
lsr
bcs
bit
tay
lda
ph a
txa
sta
jsr
tax
pla
sta
ph a
txa
jsr
bit
bpl
bit
pla
plp
rts

combyt ;get cursor character
rdrnain ;point to main bank
ourch ;get x coord

;div by 2
:bankok ;if odd, it's main ban
rdaux ;else point to aux ban

;get x/2 into Y reg
(base),y;get char under cursor

;save char under curse
;get cursor char to ac

(base),y;display on screen
delay ;wait a bit(or til

;save cursor char
;'member char from

(base),y;redisplay it

delay
kbd

;save it again
;recall cursor char
;wait a bit(or til key)
;is key hit?

]loop ;nope, do it again
rdrnain ;pt to ma i n mem again

;pull char off stack
;restore 'rupt status
;and exit

74
75
76
77
78
79
80
81
82
83

* Wait for a while or until key is pressed

delay
)loop

ldx to
bit kbd
bmi :rts
jsr : rts
jsr : rts
dex

;loop 256 times
;is key hit?
;yep, e x it
;kill s o me t i me

;decrement c ounter
;no t done yet

84 : rts
bne]loop
rts

85
86 * Save SO-column text scrn to 2K memory buffe
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

savescrn j sr
bit
jsr
bit
ldx
inx

savebank jsr
jsr
ldy

saveit ldx
]loop lda

sta
lda
sta
lda
sta
lda
sta
dey
dex

combyt ;get address to store
rdaux ;aux bank
savebank
rdmain ;main bank, f a ll thru
ptr3+1 ;point t o n ext lK f

setptrs
save it
t$F7
t$77
screenO,y
(ptrO), y
screen!, y
(ptrl) , y
screen2, y
(ptr2) ,y
screen3,y
(ptr3),y

; save from main ba
;set ptrs for move
;save half this ban
;save other half
;save 100 bytes
;get from scree n
; and store to ptrs

bpl)loop

;point t o nex t by
;decrement counte
;more

rts

111 * Load 80-column text scrn from 2K memory buff
112
113
114
115
116
117
118

loadscrn jsr
bit
jsr
bit
ldx
inx

combyt
rdaux
loadbank
rdmain
ptr3+1

;get addr to r ecall fr
;aux bank

;main bank
;point to next lK f
; load to main bank

119 loadbank jsr setptrs
120
121
122
123
124
125
126
127
128
129
130

loadit
)loop

jsr loadit
ldy t$F7
ldx t$77
lda (ptrO) , y

;get half this bank
;get other half
;get 100 bytes
;get from memory buff

sta
lda
sta
lda
sta
lda
sta

screenO,y ; and store to screen
(ptrl),y
screenl,y
(ptr2),y
screen2,y
(ptr3),y
screen3,y

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

dey ;point to next byte
dex ;decrement counter
bpl]loop ; more
rts Picture This!

* Set pointers for save/load loop

setptrs lda Jt$00 ; ptrs all pt to even pgs

Envision a full page ad for
your product passing in
front of thousands of the
most active Apple II hard
ware and software buyers
in the world!

sta ptrO
sta ptrl
sta ptr2
sta ptr3
stx ptrO+l
inx
stx ptrl+l
inx
stx ptr2+1
inx
stx ptr3+1
ldy Jt$77
rts

;point to

2nd

3rd

4th
;init y for

1st page

saveit/loadit

And at about 1 0°/o of the cost of a
similar ad in other publications!

Our ad representatives would be excited to
work with you and plan an ad that would be
the most cost effective for you.

Call (509) 923-2249 and ask for an ad kit.
Or write Ariel Publishing, Box 398, Pateros,
WA 98846.

" ... the single most important business-oriented
product for the Apple U since Apple Works."

APPLE II
•:
i

BY CHARLES H. GAJEWAY -~,
);.
~.:
~: Masterful database. Are you

f .. ready for a sweeping statement? Here
goes: I think that DB Master Profes·
sional (Stone Edge Technologies: $295)
is the single most important business
oriented product for the Apple II since
the introduction of Apple Works. As the
only true relational database program
for the Apple lie, lie, and IIGS, DBMP
can give a 128K Apple II the kind of
data-handling power and flexibilitynor
mally associated with MS-DOS and
Macintosh systems running expensive
andhard-to-leam software. (A relational
database can link, or relate, information

from several data files.)
I jumped right into the program with

my standard test data-a pair of files
that tracks a record collection, with in
formation on album titles, artists, mu
sic category, song lengths, and com
posers. This test is complex, and many
well-regarded programs-including
Apple W arks-have failed miserably at
it. Even with very little experience, I
was able to get the system up and run
ning withDBMP in a surprisingly short
time.

Report generation is extremely pow
erful, making it easy to design anything
from a mailing label, to a point-of-sale
invoice (that automatically updates in
ventory records, of course), to custom
ized form letters. Whereas most data-

! . "!!.

base programs must be combined with a
word processorto do complex reports or
mail merge, DBMP does it all.

The manuals are complete, well il
lustrated, and generally clear, although
they are sometimes overly technical and · ·
fragmented. You will need to keep both
books handy at all times, especially as
you try out some of the more sophisti
cated features. And while the program
is operated with a simple menu system,
DBMP takes a fair amount of time to
learn because of its array of features and
options. DBMP gives you all the power
you need and can even import your
current files from Apple Works (except
version 3.0) and other programs. •

Reprinted with permission from
Home Office Computing.

•,•,•.· .· .

Stone Edge Technologies, Inc. DB Master Professional P.O. Box 3200 • Maple Glen, PA 19002 • (215) 641-1825

Directing Traffic
By Nate Trost

(Editor: Nate might not appreciate me sharing this, but
were it not for a slight over abundance of exclamation
points it would be downright diflkult to discern that he is
but 13 years old.)

No, this isn't an article about using an Apple II to control
McDonald's, but it is about how you can easily create
multiple stacks and direct pages!

Directing Direct Page

OK, let's say that you're writing a program that requires
a lot of direct page space. Since DP space on the GS is
at a premium, if you need more, just create your own!
Yes, it's easy, it's simple, and it works!

You can do this by using a register that premiered on the
65816, the Direct Page Register (DPR). Unlike zero page
on the 6502, which is fixed in memory from $00 to $FF,
the direct page can be anywhere in bank zero. The DPR
is 16 bits, so it can reference a value anywhere within
the 64K of bank zero. When you do an operation that
accesses direct page, such as STA $20, the 65816 uses
the address in the DPR to determine the first byte of the
direct page (example: if the DPR is set to $3300, then a
LDA $12 will be reference location $3312). Listing one
is a short program that demonstrates this technique. It
creates space for a new DP, stores $1234 in $20 of the
normal DP, switches to our new DP and stores $ABCD
in $20, then checks to see if both DPs are correct.

"BUT WAI11" you cry, "you can't just put your direct
page anywhere you want on the GS, what about the
memory manager? It has to be relocatable!" Yes, you are
right! So, we use _NewHandle to get a page of memory
from the Memory Manager, turn our handle into a
pointer and pass that to the DPR. Here's the code:

PushLong #0 ;space for result
PushLong #$100 ;one page of memo ry
PushWord ProgiD ;our program ID
Push Word #$COOS ;more on this later
PushLong #0 ;we want bank 0!

NewHandle ;old-fashioned too l-call
PullLong NewDPH ;get handle
DeRef NewDPH;NewDPPtr;deref hndl to get
* a pointer to our block of memory.

The only real head-scratcher is the Push Word #$C005.
This tells the memory manager that we want our new
memory block locked (unpurgeable). fixed (unmovable).
in a fixed bank, and page aligned (starting on a page
boundary).

"Fine, but.. .how do we get the pointer into and out of the
DPR??" Glad you asked. There are two ope odes for doing
this: TDC (transfer DPR to accumulator) and TCD
(transfer accumulator to DPR). Here's how the code
looks to make our new direct page active:

tdc ;pop old DP loc. into ace
sta OldDP ;save it away f o r later

lda NewDPPtr ;load our new l ocation
ted ;and WHAMMO!

To switch back, just STANewDPptr and LDA OldDP. So
there you have it -an easy, efficient way to get the direct
page space you need. Remember to get rid of your new
DP space via _DisposeHandle when you're done with it!

Stocking Stacks

Creating another stack is quite similar to the DP code
above, with a few minor differences.

1) Rather than the direct page register, we use the 16-
bit register called the Stack Pointer (SP). which points
to the location that the data will be stored next time you
push something on the stack.

2) The _NewHandle call is the same, but the stack is not
limited to one page! You can have a 5-lOK stack if there
is enough room in bank zero.

3) After you dereference your memory handle, you must

add the size of the handle minus one (so it points to the
HIGHEST byte in the allocated block. e.g. a one-page
block of memory for a stack at $100 means that the SP
should be set to $IFF. $200 to $2FF. and so on). This
is because, when you push a value to the stack. the SP
is decremented. If we set the stack pointer to the
beginning of the memory block. we would push our way
right out of our memory.

4) The opcodes are slightly different: TSC and TCS
transfer the SP to and from the accumulator. Here's the
code:

tsc ;get old SP in accumulator
sta OldStackPtr ;and save for later

lda NewStkPtr
tcs

;load new pointer
;and pop it in

Since the new stack pointer will change as you push/
pull to switch back to the old stack, do this:

tsc
sta OurStk

;get our SP in accumulator
;and save for later

lda OldStackPtr ;get old stack
tcs ;and make the switch

Then, you may use OurStk instead of NewStkPtr for
your next stack switch operation. Listing two demon
strates this method by pushing stuff on both stacks.
making sure the values are correct. doing a JSR and a
tool call using the new stack. and returning to the
calling routine.

These two tricks can be used in any GS program. You
may even want to turn the stack and direct page
switching code into a macro (e.g. -StackSwitch
OldStack;NewStack)! The only things you have to really
watch are:

1) That you don't put values in one stack or DP and try
to get them out of another. and

2) Pushing or pulling too much data on or off the stack.

Listing 1

lst
XC

XC

off

mx %00
rel
use SDP.MACS
put 1/tool.equates/e16.gsos
put 1/tool.equates/e16.memory

**
* *
* --- Double DP --- v 1.0 By Nate Trost *
* *
* Creates second DP and fools around with *
* it, switch DP's a couple times. *
* *
* Copyright (c) 1990 Ariel Publishing and *
* Nate Trost. Some rights reserved. *
* *
**

*---------------------
*--- first let us start our tools---
*---------------------

_TLStartUp ;the all-wise TL

-MMStartUp tO ;Mr. Scrooge ze MM
PullWord ProgiD ;grab our program ID

_MTStartUp ;start Misc. tools

*------------------------
*-- allocate our memory from Mem. Manager --
*------------------------

*Get 1 page of locked,fixed,bank O,page aligned

PushLong to ;space for result
PushLong t$100 ;only 1 page
Push Word ProgiD ;program ID
Push Word t$C005 ;memory attributes
PushLong to ;we want bank 0!

New Handle ;I'm hungry for RAM!

* Now we gotta get handle and turn into pointer

PullLong DP2Hndl
Deref DP2Hndl;NewDPPtr

*-- save old DP contents of $20
*-- and put our own stuff on

lda $20
sta
lda
sta

Old20
t$1234
$20

*------------------------
*--- OK! now switch to 2nd DP & test it by -
*--saving some stuff in it and then --

*----------------------------

tdc
sta OldDP

lda NewDPPtr
ted

lda t$ABCD
sta $20

*
*-- switch to old DP --
*

tdc
sta TwoDP

lda OldDP
ted

Whoops lda $20
cmp t$1234
bne Whoops
lda Old20
sta $20

*-----------------

;get old DP ptr.
;and save it

;get ptr to our space
;turn it into new DP

;easy to remember!
;PRESTO! even though
;$0 in direct page
;isn't $0 in real
;memory, IT WORKS!

;save current DP Ptr.

;switch to old DP

;load the value we
;stored earlier
;is it the same?
;yes, it was
;so restore old value

*--- now back to the new DP --
*-----------------------

tdc
sta OldDP ;save old DP Ptr.

lda TwoDP
ted

Try Again lda $20 ;load value stored
cmp t$ABCD ;new DP & check if
bne TryAgain ;it's correct

*---------------------
*-- back to the old DP --
*---------------------

* We don't save current DP ptr cuz we won't
*be using it anymore

ByeBye lda
ted

OldDP

*---------------------------
*-- Dispose our DP space, shutdown
*--tools & get outta this place!
*---------------------------

in

:QParms

PushLong DP2Hndl ;clean up memory
_DisposeHandle

MTShutDown ;shut down MT
-MMShutDown ProgiD

TLShutDown ;and MM & TL & BLT ...

iGSOS _Quit;:QParms;1
ds 2
ds 4

brk ;should NEVER hit

- >> Data for program <<-

OldDP ds 2
DP2Hndl ds 4
ProgiD ds 2
NewDPPtr ds 4
TwoDP ds 2
Old20 ds 2

*==

sav
end

Listing two:

SDP.l

lst off
XC

XC

mx %00
rel
use SS.MACS
put 1/tool.equates/e16.gsos
put 1/tool.equates/e16.memory

*
* === Double Stack === V 1.0 -By Nate Trost *

*
*
*
*
*
*
*

Creates second stack and fools around with
it, switch between stacks a couple times.

Copyright 1990 Nate Trost and Ariel
Publishing Inc., but go ahead and use this
code in your own program.

*

*
*
*
*
*
*
*

*----- -------------
*-- first let us start our tools--
*------------------------

_TLStartUp ;the all-wise Tool Loc.

-MMStartUp iO ;Mr. Scrooge ze M.M .
PullWord ProgiD ;grab our program ID

_MTStartUp ;start Misc. tools

*---------------------------
*- allocate our memory from Mem. Manager -

*---------------------------
* Get one page of locked,fixed,bank 0,
* page aligned memory

PushLong iO ;space for result
PushLong i$100 ;only 1 page of memory
PushWord ProgiD ;program ID
PushWord i$C005 ;the code for attribs.
PushLong iO ;we want bank 0!

NewHandle

*Now I get memory handle and turn into a Pointer

PullLong Stack2H

Deref Stack2H;NewStkPtr

*Now start the testing

lda
pha

t$b500

*---------------------------

;push value onto old
;stack to test later

tsc ;save stack Ptr.
sta TwoStack

lda OldStack ;switch to old stk.
tcs

Mistake pla ;test our o l d stack
cmp t$b500
bne Mistake

*----------------------
*-- now back to the new stack ---

*----------------------
tsc
sta OldStack ;save old S. Ptr.

lda TwoS tack
tcs
pla ;test the stuff put
cmp t$542C ;on the new stack
beq Next
lda t4
brk ;should NEVER BRK

Next pla
cmp t$3F
beq TestJSR
lda t3
brk ;should NEVER hit

*--------------------------
*-- Now let's jump to a subroutine
*-- and make a tool call using new
*-- stack

*-OK! now switch to 2nd stack & push stuff on- *--------------------------

*-------------------------
tsc
sta OldStack

;get old Stack ptr.
;and save it

*Now we get our pointer and make it point to
*the LAST byte of our memory because when you
*push the Stack Pointer is DECREMENTED

lda NewStkPtr ;get ptr
adc t$ff ;point to LAST byte
tcs ;and make new stack

lda t$3F ;push some data on
ph a
lda t$542C
pha

*-------------------
*-- switch to old stack --
*-------------------

TestJSR jsr SubR

*--------------------
*-- back to the old stack --
*--------------------

* Since we won't be using stack2 anymore, we
* don't save the current stack pointer.

ByeBye lda
tcs

OldStack

*-----------------------
*- Dispose our stack space, shutdown
*-tools & blow this joint

*---------------------

PushLong Stack2H ;clean up our mess
_DisposeHandle

MTShutDown ;shut down MT

-MMShutDown ProgiD
_TLShutDown ;and MM & Tool Loc.

iGSOS _Quit;:QParms;l
:QParms ds 2

ds 4

brk ;should NEVER hit

*'--------------------
*--- Our test subroutine ---
*·--------------------

SubR -NewHandle tl75;ProgiD;tattrLocked;tO
_DisposeHandle
rts

*- >> Data for program

OldStack ds 2
Stack2H ds 4
ProgiD ds 2
NewStkPtr ds 4
TwoStack ds 2

;testing tools calls
;with new stack ..

<<-*

*==

sav SS.l
end

Call
Box®

The Toolbox
Programming

System

WYSIWYG?
(What You See Is What You Get)
Four powerful WYSIW'IG editors slash program
ming time dramatically for Assembly, C. Pascal
and Applesoft BASIC programs. YESI . I said
Applesoft, CALL-BOX includes the first full func
tion Applesoft BASIC interface for the llgs toolbox
as well but let's talk about the editors first.

• Image Editor .
Create Icons. Cursors, and Pixel images in
either 640 or 320 mode.

• Window Editor
Create Window templates with scroll bars, con
trols, etc. plus custom colors.

• Dialog Editor .
Create Dialog templates using Radio buttons,
Check boxes, Line edit items, text in various
styles, etc.

• Menu Editor
Create Menu templates with keypress equiva
lents, checks, diamonds, Font styles. etc.

Al l editors output APW source code, Linkable
object code or resource files to make the best
match to your current development system. Every
thing is accessable f rom the CALL-BOX Editor
shell that includes these editors plus File utilities.
Configuration utilities, programmable application
launcher and the BASIC interface.

The CALL-BOX BASIC interface allows the Apple
soft programmer to use Super Hi-Res via Quick
draw II, desktops, menu bars, windows, ports.
fonts, dialog boxes, and the cursor linked task
master system in the llgs. This interface incor
porates automated calls to minimize the code
needed in your BASIC program and has added
Long Call, Long Poke, Long Peek, and super
array functions to bring Applesoft up to snuff
with the additional memory in your llgs.

A ll this plus a demo. sample code and bound
manuals Fully GS/ OS V5.0 compatible and all in
one place for the first time everl

The CALL-BOX TPS $99.00
Add $4.50 shipping and handling.
Foreign add $10.50.
Send check. money order. Visa or MasterCard.

(714) 964-4298

• 8/16 on Disk •

The magazine you are now holding in your hands is but a subset of the material on the 8/16 disk. We
have combed the BBS's and data services across the country to collect the best of the public domain and
shareware offerings for programmers. Not only that. but we have extra articles and source code written
by our staff. With DLT16 and DLT8 (Display Launcher Thingamajigs) to guide you, you can read articles,
display graphics, and even launch applications.

Highlights (so far every disk has had more than 650K of material!)

• March '90: 8 bit- the entire source code to Floyd Zink's Binary Library Utility. 16 bit- Bill Tudor's
fantastic InitMaster CDEV, Parik Rao's Orca/ APW utilities
• April '90: 8 bit- SoftWorks, anAppleWorks™ filecard interface for Applesoft programs, the source code
to Bruce Mah's File Attribute Zapper. 16 bit- More Orca and APW utilities, Phil Doto's APF viewer
• May '90: 8 bit - Tom Hoover's AppleWorks Style Line Input. 16 bit - Bryan Pietrzak's shell utilities for
Orca/ APW, Steve Lepisto's "Illusion's of Motion".

1 year- $69.95 6 months- $39.95 3 months - $21 Individual disks are $8.00 each

• Shem The Penman's Guide To Interactive Fiction •
This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second of
all it is a very well organized, well written, and well programmed introduction to programming interactive
fiction. It is, in fact. the only package of its kind I've ever seen!

Author Chet Day is a professional writer (go buy Hacker at your nearest book store!) and an educator who
is as conerned with the content of your interactive fiction program as with the form. This package is fun,
entertaining, and useful. It includes Applesoft, ZBasic, and Micol Advanced Basic "shells" which will
drive your creations - $39.95 (both 5.25" and 3.5" disks supplied). P .S . The advantage to the ZBasic
and Micol versions is that with the easy integration oftext and graphics provided in those langauges, you
can easily load a graphic and overlay text in the appropriate spots.

• ProTools™ •
Fast approaching its first birthday, our ProTools library for ZBasic programmers has grown into a mature
and powerful product. It's bigger than ever, too. inCider's Joe Abernathy called it, " ... the only way to go
for ZBasic programmers."

ProTools includes a text based anda double high resolution graphics based desktop interface (pull-down

menus, windows, mouse tracking, etc.) Both desktops support quick-key equivalents for menu items,
too! We've added a third desktop package in version 2.5 ofProTools, too. This one is mouseless. meaning
that it is entirely keyboard driven and therefore much more compact than its predecessors.

Mr. Ed, our "any window" text editor, will provide AppleWorks™ command compatible text editing in
the screen rectangle of your choice. With no limit to edit field length, Mr. Ed is like having a word
processor available as part of your program Our newest version of Mr. Ed will even scroll the window if
you want to support edit fields longer than your designated rectangle!

ProTools contains literally scores of additional functions and routines, including:

• FRAME.FN • SMARf.INPUT.FN • SCROLL. MENU .FN
• GETMACHID • GETKEY.FN • SCREENDUMP80
• SAVE_SCREEN •DIALOG • CRYPT
• DATETIME • BARCHART • LINE GRAPH
• ONLINE • PASSWORD • READTEXT
• SETSPEED •VERfMENU • PATHCK

ProTools is $39.95 (your choice of 3.5" or 5.25" disks).

NOTE: If you are already a ProTools owner, be sure and send us a blank disk and a SASE so that we
can give you your free update. The new additions and bug fixes make it very worthwhile!

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software and
publications). If you are el.Jer dissatisfied with one of our products, we will cheerfully refund the amount
you paid on your request. Furthermore. we will ship the software packages to you on 30 day approval,
meaning that you'll not have to pay until you've had the stuff for nearly a month. Of course, we take
checks, VISA and MasterCard up front, too. Just write to: Ariel Publishing, Box 398, Pateros, WA
98846 or call (509) 923-2249.

Insecticide
The typesetting gremlins got loose last month, wreak
ing all kinds of havoc in Robert Stong's parameter
passing article for Applesoft.

• First, change line 100 of the Applesoft listing to:

PRINT CHR$(4) ;"BLOAD PARAMS.OBJ, A$6000"

• Next. beware that our right margin was extended too

needs TH changed to THEN, and line 615lost the final
")".

Also, the version of the program we printed had already
been run, thereby causing the variables names in the
subroutine to have been changed! This does not hurt
the program, but it makes the REM statements incor
rect.

wide, thereby causing the last character or two of Thanks, Bob, for being so prompt in catching these
several lines to get cut off. Line 520 needs a":", Line 540 things for us.

The Sensational Lasers
Apple lle/llc Compatible

$345.;7t~~1ee~r~g~6;s!
~ Now Includes

COPY II PLUS®

The Laser 128® features full Apple® II compatibility with an internal drsk dnve. serial. parallel. modem. and
mouse ports. When you 're ready to expand your system, there 's an external dnve port and expansron slot. The
Laser 128 even rncludes 10 free software programs' Take advantage of thrs exceptronal value today . . $345

Super High Speed Optionl

only $385
The LASER 128EX has all the features of the
LASER 128, plus a triple speed processor and
memory expansion to 1MB $385.00

The LASER 128EX/2 has all the features of the
LASER 128EX, plus MIDI , Clock and Daisy
Chain Drive Controller $420.00

DISK DRIVES
* 5.25 LASER/ Apple 11 c $ 99.00
* 5.25 LASER/ Apple 11 e $ 99.00
* 3.50 LASER/ Apple BOOK $179.00
* 5.25 LASER Daisy Chain ... ~$109.00
* 3.50 LASER Daisy Chain .. . ~$179.00

USA MICRO

Save Money by Buying
a Complete Packagel

THE STAR a LASER 128 Computer with 12"
Monochrome Monitor and the LASER 145E
Printer $620.00

THE SUPERSTAR a LASER 128 Computer with
14" RGB Color Monitor and the LASER 145E
Printer $785.00

ACCESSORIES
* 12" Monochrome Monitor $ 89.00
* 14" RGB Color Monitor $249.00
* LASER 190E Printer $219.00
* LASER 145E Printer ~$189.00
* Mouse $ 59.00
* Joystick (3) Button $ 29.00
* 1200/2400 Baud Modem Auto $129.00

YOUR DIRECT SOURCE FOR APPLE
AND IBM COMPATIBLE COMPUTERS

~ ~ 2888 Bluff street. suite 257 • Boulder. co. 8o3ot ·'-41 Phone Orders· 1-800-654-5426
~ lliiiilill Add 3% Shipping • Colorado Residents Add 3% Tax ., •

8-5 Mountain nme · No Surcharge on Visa or MasterCard Orders!

Your satisfaction is our guarantee! customer Serv•~eA~8g~d~~:,81s_9;03~~i~~~~~~ i303J 938-9089

Laser 1281s a reg1s1ered 1rademark ol V•deo Technology Computers. Inc Apple, Apple lie. Apple lie al'ld lmagewroter are regis1ered trademarks ot Apple Computer . lnc

BULK RATE
U.S. POSTAGE

PAID
PATEROS, WA
PERMIT NO. 7

http://apple2scans.net

	8/16 - Magical Resources: Joe Jaworski tackles the Resource Manager
	The Publisher's Pen - Ross W. Lambert
	Magical, Mysterious Resources - Joe Jaworski
	The ZBasic Zealot: The Pascal Protocol and You - A Modest Proposal - Ross W. Lambert
	VAPORWARE by Murphy Sewall
	Basically Applesoft: Taking a Screen Test - Jerry Kindall
	Directing Traffic - Nate Trost
	From the House of Ariel
	Insecticide

